Если в ответе должны быть целые числа, задача становится еще веселее. Вот мой вывод формулы, порождающей целое семейство решений:
Решений бесконечно много, но некоторые все равно остаются вне поля зрения, потому что другие значения d тоже могут давать целочисленные значения c . Например, эта формула не дает моего любимого решения: 1 × 33 и 11 × 6. Мой коллега Тим Кросс, съевший собаку на диофантовых уравнениях, подсказал мне ловкий способ найти все целочисленные решения. Моей профессии свойственна мизантропия, поэтому на сей раз я предлагаю читателю найти этот способ самостоятельно.
Эта стратегия слишком сложна, чтобы полностью изложить ее здесь, но она реализована коллегами из Академии Хана: https://www.khanacademy.org/computer-programming/tic-tac-toe/5946909186326528.
Я рекомендую прочесть эту историю целиком: Simon Singh, Fermat’s Last Theorem (London: Fourth Estate Limited, 1997). [ Сингх C. Великая теорема Ферма. — М.: МЦНМО, 2000.]
Цитата из единственного словаря, чтение которого доставляет мне удовольствие: David Wells, The Penguin Book of Curious and Interesting Mathematics. — London: Penguin Books, 1997.]
По правде говоря, я скорее уж фанат «Голодных игр».
Майкл Першен, удивительный человек и обладатель самого аналитического интеллекта на свете, сформулировал идеи этих «стратегий» раньше, чем они пришли мне в голову. Я благодарю его за помощь при написании этой главы.
Посмотрите милый мультфильм на эту тему: https://www.geogebra.org/m/WFbyhq9d.
Моя жена математик; мы в браке уже пять лет, но, кажется, она по-прежнему помнит, как меня зовут.
Подробнее: Matthey Parker, Things to Make and Do in the Fourth Dimension. — London: Penguin Random House, 2014. [ Паркер М. Чем заняться в четвертом измерении? — М.: АСТ, 2020.]
Я благодарен Мэтью Фрэнсису и Эндрю Стейси за помощь по этому вопросу. Я хотел написать, что Вселенная «гиперболическая» или «эллиптическая», а не «евклидова», но они сообщили мне, что в действительности она представляет собой труднопостигаемое лоскутное одеяло из этих более простых геометрий.
Стейси написал: «Риманова геометрия обобщает евклидову во многих отношениях; она намного богаче евклидовой, но упускает из виду некоторые аспекты, в первую очередь то, как объекты соотносятся друг с другом в различных областях пространства». Это включает и понятие параллельных прямых.
Фрэнсис добавил интересную историческую деталь: «В XIX веке Уильям Кингдон Клиффорд предложил использовать неевклидову геометрию, чтобы заменить физическое понятие силы, но он просто полагал, что „это было бы прикольно“. Меня не удивило бы, если другие тоже продумывали подобные идеи». Естественно, Эйнштейн тесно сотрудничал с математиками; ни один прорыв не происходит сам по себе.
Эта история изложена в графическом романе: Apostolos Doxiadis et al., Logicomix: An Epic Search for Truth (New York: Bloomsbury, 2009). [ Доксиадис А., Пападимитриу Х. Логикомикс. Поиск истины. — М.: Карьера Пресс, 2019.]
James Gleick, The Information: A History, a Theory, a Flood (New York: Knopf Doubleday, 2011). Блестящая книга. [ Глейк Дж. Информация. История. Теория. Поток. — М.: Corpus, 2013.]
Eugene Wigner, «The Unreasonable Effectiveness of Mathematics in the Natural Sciences. Richard Courant lecture in mathematical sciences delivered at New York University, May 11, 1959», Communications on Pure and Applied Mathematics 13 (1960): 1–14. Сногсшибательное эссе. [Статья Юджина Вигнера «Непостижимая эффективность математики в естественных науках» в переводе В. А. Белоконя и В. А. Угарова была опубликована в журнале «Успехи физических наук» в 1968 году (Т. 94, С. 535–546; https://ufn.ru/ru/articleszf/). — Прим. науч. ред. ]
Моим учителем в этой главе был Дэвид Кламп, чьи замечания сочетали эрудицию кого-то вроде Карла Сагана с мягкой человечностью кого-то вроде Карла Сагана (похоже, Дэвид и есть Карл Саган).
Israel Kleiner, «Emmy Noether and the Advent of Abstract Algebra», A History of Abstract Algebra (Boston: Birkhäuser, 2007), 91–102, https://link.springer.com/chapter/10.1007/978-0-8176-4685-1_6#page-2. Я исказил аргумент Клейнера; ключевая идея в том, что в XIX веке удалось добиться больших успехов в геометрии и математическом анализе, но алгебра оставалась в первозданном закостенелом состоянии.
Joaquin Navarro, Women in Maths: From Hypatia to Emmy Noether. Everything is Mathematical (Spain: R. B. A. Coleccionables, S. A., 2013) [ Наварро Х. Женщины-математики: от Гипатии до Эмми Нётер. Вып. 37. 2014. — (Сер.: Мир математики).]
Читать дальше
Конец ознакомительного отрывка
Купить книгу