Джозеф Мазур - Игра случая. Математика и мифология совпадения

Здесь есть возможность читать онлайн «Джозеф Мазур - Игра случая. Математика и мифология совпадения» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Литагент Альпина, Жанр: Математика, foreign_edu, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Игра случая. Математика и мифология совпадения: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Игра случая. Математика и мифология совпадения»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Что есть случайность? Этим вопросом мы задаемся, сталкиваясь с неожиданными и, казалось бы, невозможными совпадениями. Однако с математической точки зрения шансы многих событий гораздо выше, чем любой из нас мог бы подумать. В книге «Игра случая» математик Джозеф Мазур открывает необыкновенный мир теории вероятности, описывая сложные математические понятия простым, веселым языком. Как объяснить то, что книгу из школьной библиотеки с вашей подписью вы вдруг обнаруживаете на букинистическом развале в другой части света? Могут ли присяжные быть абсолютно уверенными в результатах анализа ДНК, найденного на месте преступления? Почему Аврааму Линкольну снились вещие сны? На многих примерах реальных событий Мазур показывает нам неотвратимость случайных событий. Эта книга понравится всем, кто когда-либо задавался вопросом, каким образом маленькие решения, которые мы принимаем в течение жизни, складываются в невероятное целое. Книга обязательна к прочтению любителям математики, а также всем тем, кто стремится понять истинную природу невероятных историй.

Игра случая. Математика и мифология совпадения — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Игра случая. Математика и мифология совпадения», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Особую признательность хотелось бы выразить моим редакторам: Ти Джею Келлехеру и Бену Платту. Их педантичность, конструктивная критика и разумная редактура привели к изменению структуры книги, что значительно прояснило ее главную идею. Также благодарю Кун До, ответственного редактора в Basic Books, за быстрые и понятные ответы на все мои вопросы и моего агента Эндрю Стюарта, разглядевшего потенциал этого проекта в моем очень кратком описании.

Сноски

1

Речь идет о выглядящем теперь анахронизмом проводном телефоне. – Прим. пер.

2

Эмигрант. – Прим. ред.

3

Шедевр . – Прим. ред.

4

Или синхронии – зависит от русского источника. – Прим. пер.

5

Человек целостный есть рыба, извлеченная из глубины (лат.). – Прим. ред.

6

То есть вероятность наступления исхода равна 1/36 – Прим. науч. ред.

7

Каждая кость может выпасть одной из шести сторон, и, значит, всего есть 6 × 6 = 36 элементарных исходов. Из них событию «в сумме выпало 4 очка» соответствуют исходы 1-3, 2-2 и 3-1 – всего таких 3. Следовательно, вероятность равна 3/36 = 1/12. – Прим. науч. ред.

8

Здесь описываются «шансы против события». Часто шансы определяются прямо противоположным образом: как p /(1 – p ). В этом случае «шансы 1 к 4» означали бы вероятность 1/5. Однако в этой книге принято другое соглашение. – Прим. науч. ред.

9

Действительно, если подбрасывать монетку дважды, то в среднем мы должны получать одного орла. Вероятность того, что мы получим ровно одного орла, равна 1/2: всего есть 4 элементарных исхода (орел-орел, орел-решка, решка-орел, решка-решка), из них нам подходят два (орел-решка, решка-орел). Представим теперь, что мы подбрасываем монетку 1000 раз. Вероятность того, что мы получим ровно 500 орлов, довольно маленькая – гораздо меньше, чем 1/2, – потому что мы легко можем получить 505 орлов или 498 или какое-нибудь другое число, близкое к 500. – Прим. науч. ред.

10

Здесь имеется в виду «вероятность двух выигрышей и двух проигрышей в некотором фиксированном порядке». – Прим. науч. ред.

11

Имеется в виду, на исходной диаграмме, до модификаций. – Прим. науч. ред.

12

Здесь имеется в виду следующее. На рис. 7.2 построена гистограмма для числа выигрышей в рулетку при 100 играх. На горизонтальной оси отмечены отрезки, соответствующие числам от 0 до 100. Над каждым из отрезков построен прямоугольник, высота которого равна вероятности получить соответствующее число выигрышей. Поскольку горизонтальные отрезки единичные, высота каждого отрезка численно совпадает с его площадью. Если теперь задать вопрос, например, «какова вероятность, что число выигрышей будет от 42 до 47», то для получения ответа нужно будет сложить все высоты прямоугольников, построенных над отрезками от 42 до 47. Визуально проще при этом думать не о сложении высот, а о сложении площадей этих прямоугольников: эта сумма будет равна просто площади под частью всей фигуры, расположенной над отрезком [42, 47]. Таким образом вероятность получает простую геометрическую интерпретацию в виде площади. Если теперь модифицировать диаграмму, сжав ее по горизонтали в несколько раз и растянув по вертикали в такое же число раз (это будет соответствовать выбору других единиц измерения для горизонтальной оси, на которой мы откладываем значения нашей случайной величины), то высоты прямоугольников изменятся и больше не будут обозначать вероятности. В то же время, если рассмотреть часть фигуры, лежащую над каким-то отрезком, то в результате модификации она перейдет в другую фигуру той же площади. Эта площадь по-прежнему будет вероятностью того, что случайная величина попадет на (новый) отрезок. – Прим. науч. ред.

13

Имеются в виду «эмпирические вероятности», то есть частоты выпадения в конкретной серии подбрасываний. – Прим. науч. ред.

14

Имеется в виду Общество морских купален и сообщество иностранцев в Монако, де-факто являющееся правительством Монако. – Прим. пер.

15

«22 черный 22» (фр.) – Прим. ред.

16

Закон, описывающий число мячей в зависимости от времени, может быть выражен формулой A×exp(–Ct), где exp – экспонента. Поэтому говорят, что уменьшение происходит «экспоненциально». – Прим. науч. ред.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Игра случая. Математика и мифология совпадения»

Представляем Вашему вниманию похожие книги на «Игра случая. Математика и мифология совпадения» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Игра случая. Математика и мифология совпадения»

Обсуждение, отзывы о книге «Игра случая. Математика и мифология совпадения» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x