Бернулли был так доволен своей теоремой, что предполагал ее применение к наиболее важным событиям всего сущего. В своем «Искусстве предположений» он написал:
Этот замечательный результат показывает нам, что, если бы наблюдение всех событий продолжилось вечно (и вероятность обратилась бы в совершенную достоверность), тогда мы бы наблюдали, как все явления случаются с постоянными коэффициентами и неизменной цикличностью. Таким образом, даже за наиболее случайными и удачными нам надо будет признать определенную квазинеобходимость и, так сказать, фатальность. Я не знаю, захотел бы Платон включить этот результат в догмат о всеобщем возвращении вещей в их предыдущие положения [ апокастасис ], в котором он предсказывал, что по прошествии бесчисленного множества веков все вернется в свое исходное положение {49}.
В теории теорема Бернулли должна была стать интеллектуальной бомбой, чудом математической оценки неопределенности. Она сулила предсказание будущего. Здесь мы впервые встречаем математический закон, который дал нам замечательный и простой способ понять, как ведет себя случайность в реальном мире; теорему, которую Бернулли с гордостью называл строгой, оригинальной и такой блистательной, что она придала значимость всем разделам его работы. Но Бернулли был разочарован некоторыми из своих экспериментов, которые относились к задачам, связанным с болезнями и погодой. Он честолюбиво задал для себя предельно высокий критерий достоверности даже по сегодняшним стандартам {50}.
Бернулли дал нам огромные возможности для оценки неопределенного поведения природы, а также азартных игр – метод расчета математического ожидания без какой-либо априорной информации. «В самом деле, если заменить урну, к примеру, на воздух или человеческое тело, содержащие в себе возбудителя [ fomitem ] различных изменений в погоде или болезней, как урна содержит жетоны, мы сможем ровно таким же образом определить посредством наблюдения, насколько проще может произойти то или иное событие в этих объектах» {51}.
Когда Эйнштейн остроумно заметил: «Бог не играет в кости с Вселенной», – он говорил о возникшей тогда квантовой механике, которая не могла достоверно предсказывать исходы рассматриваемых ею явлений {52}. Фортуна никогда не согласится с тем, что результат броска игральных костей на самом деле неслучаен, как лотерейная комиссия никогда не признает, что шарики для пинг-понга с выигрышными номерами выпадают неслучайно. Никто еще не предложил машину, дающую совершенно случайные числа. «Брошенные кости, – пишет физик Роберт Оэртер, – по сути своей не случайны; исход только кажется случайным из-за нашего невежества относительно маленьких деталей, скрытых переменных (например, угла пуска или трения), которые определяют исход броска» {53}. У большинства феноменов в нашей Вселенной (в особенности тех, которыми движут атомные силы) слишком много этих скрытых переменных, чтобы математика могла предсказывать исходы. Мы, как правило, не осведомлены о подробностях таких чудес. И все же у нас есть этот удивительный дар, который был тайной вплоть до XVII в., – дар, дающий ключ к пониманию случайности, а также средства к предсказанию будущего: знание о том, что большинство явлений неквантового механического мира подчиняются слабому закону больших чисел, пусть каждое явление в отдельности и не обладает памятью о собственном прошлом. Играет Бог в кости или нет – долгосрочные тенденции ожиданий предсказуемы и почти всегда достоверны {54}.
Доказательство Бернулли опирается на число возможных комбинаций предметов, и их расчет не имеет ничего общего со случайными поворотами фортуны. Эдит Дадли Силла, известная переводчица «Искусства предположений», говорит, что Бернулли объяснял связь посредством теологии. Она писала: «Он уверяет, что в сознании или воле Бога есть четкие и определенные ситуации, известные Богу вечно, и со временем проявляющие себя в опыте или наблюдении». Говоря о «вечности», она имеет в виду то, что Бернулли игнорировал фактор времени в расчетах коэффициентов успешности случайных событий. Силла указывает на следующий довод Бернулли: «Нет существенной разницы между тем, чтобы выбросить желаемым образом одну игральную кость в течение некоторого времени, и тем, чтобы бросить сразу такое число игральных костей, которое равнялось бы числу сделанных бросков одной кости» {55}.
Читать дальше
Конец ознакомительного отрывка
Купить книгу