Джозеф Мазур - Игра случая. Математика и мифология совпадения

Здесь есть возможность читать онлайн «Джозеф Мазур - Игра случая. Математика и мифология совпадения» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Литагент Альпина, Жанр: Математика, foreign_edu, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Игра случая. Математика и мифология совпадения: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Игра случая. Математика и мифология совпадения»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Что есть случайность? Этим вопросом мы задаемся, сталкиваясь с неожиданными и, казалось бы, невозможными совпадениями. Однако с математической точки зрения шансы многих событий гораздо выше, чем любой из нас мог бы подумать. В книге «Игра случая» математик Джозеф Мазур открывает необыкновенный мир теории вероятности, описывая сложные математические понятия простым, веселым языком. Как объяснить то, что книгу из школьной библиотеки с вашей подписью вы вдруг обнаруживаете на букинистическом развале в другой части света? Могут ли присяжные быть абсолютно уверенными в результатах анализа ДНК, найденного на месте преступления? Почему Аврааму Линкольну снились вещие сны? На многих примерах реальных событий Мазур показывает нам неотвратимость случайных событий. Эта книга понравится всем, кто когда-либо задавался вопросом, каким образом маленькие решения, которые мы принимаем в течение жизни, складываются в невероятное целое. Книга обязательна к прочтению любителям математики, а также всем тем, кто стремится понять истинную природу невероятных историй.

Игра случая. Математика и мифология совпадения — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Игра случая. Математика и мифология совпадения», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
На рис 62 мы увидим странную историю Исходы вполне следуют ожиданиям вплоть - фото 10

На рис. 6.2 мы увидим странную историю. Исходы вполне следуют ожиданиям вплоть до 45-го броска, когда решка вдруг перехватывает инициативу примерно на 105 следующих бросков! Затем идет достаточно долгий период, когда лидирует орел, и совокупное значение опять приближается к 0. Но около 286 броска решка опять надолго вырывается вперед. Не то чтобы события не согласовывались с нашими интуитивными ожиданиями. Действительное отношение орлов к решкам наверняка приблизится к 1 в ходе значительно более долгого времени, но в краткосрочной перспективе этого не происходит. За 500 бросков решка выпала только на 12 раз больше, чем орел. Это достаточно мало, но последовательности орлов и решек могут расходиться значительно сильнее в совокупных результатах. Например, рассмотрим следующее испытание, показанное на рис. 6.3.

Орел полностью контролирует ситуацию Совокупный исход показывает что орел - фото 11

Орел полностью контролирует ситуацию. Совокупный исход показывает, что орел ведет настолько уверенно на протяжении всей серии бросков, что кажется, будто решка никогда уже не вырвется вперед.

Результаты компьютерной модели 1 млн бросков разобраны в табл. 6.1. Отношение k / N , где k – число успешных исходов, а N – число испытаний, называют эмпирической частотой успешности испытаний . В правой колонке в табл. 6.1 приведены абсолютные значения разности между эмпирической частотой успешности испытаний и 1/2 – математически предсказанной частотой успешности испытаний.

Слабый закон больших чисел не исключает, что какие-то маловероятные события будут происходить часто на раннем этапе игры или на более поздних. На самом деле, даже если коэффициент успешности приближается к математически предсказанному, нет гарантии, что он таким и останется. Чуть более сильный математический результат говорит нам, что, хотя коэффициент успешности может сходиться к теоретически вычисленному, действительные значения коэффициента склонны к довольно странному поведению по мере увеличения числа испытаний. Контринтуитивно, но это так.

Слабый закон больших чисел, примененный к любому событию, вероятность которого равна p , говорит нам, что вероятность картинка 12приближается к 1 по мере увеличения N . Возьмем ԑ = 0,0001 (выбрано произвольно) с p = 1/2 для ситуации с бросанием монеты и спросим, насколько возможно, что Игра случая Математика и мифология совпадения - изображение 13 Обратите внимание (табл. 6.1), что картинка 14имеет резкие перепады при низких значениях N . Но они, очевидно, есть также и при высоких значениях. От 100 000 до 200 000 оно увеличивается. Даже с 800 000 до 900 000 оно увеличивается, пока не падает на миллионе. Создается обманчивое впечатление, что разность между орлом и решкой приближается к нулю. Но ничего не говорится о волатильности этого приближения при увеличении числа испытаний. Как мы видим, волатильность увеличивается по мере увеличения числа бросков монеты.

Итак, что же здесь происходит? Похоже, что у более высокого N есть некоторая свобода от закона больших чисел, поскольку в масштабах больших чисел больше места для незаметных ошибок.

Для 5000 бросков были 2561 орел и 2439 решек с разностью 122. Это дает ошибку в 2,4 %, что не так уж плохо. Но, если не знать распределение этих орлов, может случиться так, что 122 орла были выброшены последовательно. Придерживаясь этой точки зрения, представьте, что 758 решек выброшены последовательно за 67 500 бросков или 694 орла выброшены последовательно за 82 500 бросков. Другими словами, нет математического закона, который исключает возможность последовательного выпадения огромного числа орлов при большом N .

Глава 7 Треугольник Паскаля В физическом мире не существует совершенной - фото 15

Глава 7

Треугольник Паскаля

В физическом мире не существует совершенной симметрии, искусственных машин с бесконечно малым допуском или идеальных моделей. Это мир множества скрытых переменных, явления которого слишком трудно охватить точной мерой. Иными словами, подлинные случайности действительно происходят, и мы часто обращаемся к вероятностным картинам событий, чтобы понять сложный феномен случайности.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Игра случая. Математика и мифология совпадения»

Представляем Вашему вниманию похожие книги на «Игра случая. Математика и мифология совпадения» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Игра случая. Математика и мифология совпадения»

Обсуждение, отзывы о книге «Игра случая. Математика и мифология совпадения» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x