В отличие от остальных наук, в математике истина абсолютна. Когда мы утверждаем, что сумма двух нечетных чисел – четное число, мы подразумеваем, что это всегда так, со стопроцентной гарантией. Откуда мы знаем? Дело в том, что мы можем доказать это.
Математическое доказательство приводит к полной уверенности. В других сферах человеческой деятельности тоже используется слово «доказательство». Например, экспертиза ДНК способна доказать вину или невиновность подозреваемого. Точность этой экспертизы высока, но не идеальна. ДНК-следы, найденные на месте преступления, могут быть испорчены. Или вдруг у преступника обнаружится брат-близнец. ДНК-следы ничего не говорят о том, что́ совершил обвиняемый, даже если он действительно побывал на месте преступления.
В математике критерии истины и проверки на истинность абсолютны. Верные математические утверждения называют теоремами . Вот простой пример: Сумма двух нечетных целых чисел – четное целое число. Например, 3 и 11 – нечетные числа, а их сумма 3 + 11 = 14 – четное число. Утверждение о том, что сумма двух нечетных чисел – четное число, имеет абсолютную силу и не допускает исключений.
Откуда мы это знаем? Мы можем снова и снова придумывать пары нечетных чисел и всякий раз убеждаться в том, что их сумма – четное число. Так работают естественные науки, но не математика. Мы абсолютно уверены, что теорема верна, потому что можем привести доказательство .
Чтобы не быть голословным, приведу это доказательство здесь. Вначале нам нужно точно договориться, что значит «четное» и «нечетное». Вот определения:
• Целое число X называется нечетным , если мы можем найти такое целое число a , что X = 2 a + 1. Например, 13 – нечетное число, потому что его можно выразить как 2 × 6 + 1.
• Целое число X называется четным , если мы можем найти такое целое число a , что X = 2 a . Элегантная формулировка: четное целое число – результат удвоения другого целого числа. Например, 20 четное, потому что 20 = 2 × 10.
После этих определений мы можем перейти к доказательству теоремы о том, что сумма двух нечетных целых чисел – четное число [11] Стоит отметить, что доказательство – это не просто набор уравнений. Это рассуждение, шаг за шагом ведущее нас от исходных посылок ( X и Y – нечетные числа) к неопровержимым выводам ( X + Y – четное число).
.
Доказательство.Пусть X и Y – нечетные целые числа. Это означает, что X = 2 a + 1 и Y = 2 b + 1, где a и b – целые числа. Сумма X и Y может быть представлена следующим образом:
X + Y = (2 a + 1) + (2 b + 1) = 2 a + 2 b + 2 = 2 ( a + b + 1).
Итак, X + Y представляет собой удвоенное целое число. Таким образом, X + Y – четное число.
Доказывать теоремы непросто, но это гораздо увлекательнее, чем читать чужие доказательства, потому попробуйте доказать следующее: результат перемножения двух нечетных целых чисел – тоже нечетное число. Попытайтесь справиться с задачей самостоятельно, а потом сверьтесь с доказательством в конце раздела [12] Подсказка. Первый шаг вашего доказательства должен быть таким: «Пусть X и Y – нечетные числа». Заключительный шаг: «Таким образом, XY – нечетное число».
.
Другие математические теоремы гораздо интереснее, а их доказательства гораздо сложнее, но цель у них все та же: обосновать математический факт со стопроцентной уверенностью.
Итак:
Теорема – это математическое утверждение, требующее доказательства своей неопровержимой истинности.
Интересные теоремы красивы. Надеюсь, этот «Путеводитель» поможет вам видеть математическую красоту и наслаждаться ею.
Заключительные слова
Какие три слова жаждут услышать математики?
Конечно, нам греет душу фраза: «Я люблю тебя», но в данном случае речь идет о других заветных словах: «Quod erat demonstrandum». В переводе с латинского они означают: «Что и требовалось доказать» – и обычно завершают математическое доказательство. Впрочем, немногие пишут эту фразу целиком, большинство ученых ограничиваются аббревиатурой QED. К сожалению, и она уже вышла из моды, и сейчас в конце доказательства принято использовать символ, например небольшой квадрат: □.
Читать дальше
Конец ознакомительного отрывка
Купить книгу