Бенуа Мандельброт - Фрактальная геометрия природы

Здесь есть возможность читать онлайн «Бенуа Мандельброт - Фрактальная геометрия природы» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2002, Жанр: Математика, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Фрактальная геометрия природы: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Фрактальная геометрия природы»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Классическая книга основателя теории фракталов, известного американского математика Б. Мандельброта, которая выдержала за рубежом несколько изданий и была переведена на многие языки. Перевод на русский язык выходит с большим опозданием (первое английское издание вышло в 1977 г.). За прошедший период книга совсем не устарела и остается лучшим и основным введением в теорию фракталов и фрактальную геометрию. Написанная в живой и яркой манере, она содержит множество иллюстраций (в том числе и цветных), а также примеров из различных областей науки.
Для студентов и аспирантов, физиков и математиков, инженеров и специалистов.

Фрактальная геометрия природы — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Фрактальная геометрия природы», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В том же 1961 г. я применил идею масштабной инвариантности к нескольким шумовым феноменам. Надо сказать, что все свои разношерстные исследования я проводил в практически полной изоляции как от физиков, так и от математиков. Однако во время моего пребывания в Гарварде в качестве приглашенного профессора (1962 – 1964), Гаррет Биркгоф указал мне на некоторые аналогии между моим подходом и теорией турбулентности, созданной Ричардсоном и выдвинутой на новые рубежи Колмогоровым [276]. Хотя я и слышал об этой теории в бытность свою студентом, не думаю, чтобы ее влияние оказалось сильнее, чем влияние философской традиции, описанной в главе 41 в разделе АРИСТОТЕЛЬ …. В любом случае все это происходило задолго до того, как физики увлеклись скейлингом!

Далее, благодаря лекциям Р. У. Стюарта по перемежаемости турбулентности, я познакомился с другой работой Колмогорова ([277], 1962). Препринты этой и моей с Бергером статьи ([21], 1963) вышли буквально друг за другом с промежутком в несколько недель! Хотя Колмогоров ставил перед собой интересную задачу, в моем распоряжении имелись более мощные инструменты, которые я, кстати, без особых усилий адаптировал к турбулентности, получив в результате материал, составивший основное содержание глав 10 и 11.

Наконец, я узнал о существовании 1/f - шумов, прочел Херста [232, 233] и Ричардсона [494] и познакомился с проблемой кластеризации галактик. И снова я убедился в том, что пониманию как нельзя лучше способствуют хорошее описание и изучение следствий из него. Напротив, те модели, что я строил раньше, показались мне теперь не более чем бесполезными украшениями, подвешенными к описанию. Они отвлекли внимание от главных геометрических идей, которые я тогда формулировал, и по сути дела препятствовали пониманию. Я же никак не мог найти в себе силы от них отказаться, даже после того, как мои работы не были приняты к публикации. Что ж, те времена давно прошли, и объяснения в главах 11 и 20 (да и во всех остальных тоже) сделаны совсем из другого теста, и я рад за них.

Вот так моя увлеченность масштабной инвариантностью, постоянно подпитываясь новым энтузиазмом и обогащаясь, благодаря сменам области исследований, новыми инструментами и идеями, постепенно подводила меня к созданию полноценной общей теории. Причем теория эта никоим образом не следовала общепринятому порядку «сверху вниз», т.е. открытие, формулировка, «приложение». Ко всеобщему удивлению (включая и меня самого) она поднималась из скромных низов ко все более высоким (я бы даже сказал, головокружительно высоким) и величественным вершинам. Первые обзоры новой теории были представлены на Международном конгрессе логики и философии науки (1964), на Трамбулловских лекциях в Йеле (1971) и в Коллеж де Франс (1973 и 1974).

Геометрический аспект этой теории масштабной инвариантности приобрел большую значимость и дорос до фрактальной геометрии. Учитывая сильный геометрический уклон первых исследований турбулентности и критических феноменов, можно было ожидать, что теория фракталов будет разработана в рамках одной из этих областей. Этого, однако, не произошло.

В наши дни весьма редкими – с стало быть, аномальными – стали случаи проникновения в большую науку свежих концепций и новых методов из всевозможных низкорентабельных ее областей. Фрактальная геометрия являет нам один из новейших примеров таких исторических аномалий.

АВТОРЫ КОМПЬЮТЕРНОЙ ГРАФИКИ

Большую часть компьютерной графики в настоящем эссе выполнили следующие люди (перечислены в хронологическом порядке, считая по времени их первого вклада):

Зигмунд В. Хандельман,

Рихард Ф. Фосс,

Марк Р. Лафф,

В. Алан Нортон

и Дуглас М. Маккенна.

В помещенном ниже списке черно-белых иллюстраций, рядом с номером каждого рисунка (или – что то же самое – с номером страницы, на которой расположен рисунок) стоит первая буква фамилии автора компьютерной программы, с помощью которой создан этот рисунок. Иллюстрации, к которым приложили руку несколько человек, помечены соответствующим образом. Что касается цветных иллюстраций, то их мы обсуждали в другом месте.

Неоценимую и разнообразную помощь в подготовке иллюстраций оказали и другие - фото 204

Неоценимую и разнообразную помощь в подготовке иллюстраций оказали и другие люди, которых я также перечислю в хронологическом порядке. Хирш Левитан участвовал в создании рис. 410 и 411. Косвенное участие в подготовке некоторых рисунков принимал Джеральд Б. Лихтенбергер. Автором рис. 377 является Жан – Луи Онето, работавший с весьма новаторским графическим пакетом, разработанным Сирилом Н. Альбергой. Рис. 379 представляет собой несколько переработанную версию рисунка, созданного Артуром Аппелем и Жаном – Луи Онето. Скотт Киркпатрик предоставил нам рисунок, помещенный на с. 193, и программы, хорошо послужившие нам при подготовке рис. 312 – 315 и 424 – 427. Питер Оппенгеймер принял участие в создании изображений, помещенных на с. 247. Питер Молдейв помог с рис. 268 – 270, а Дэвид Мамфорд – с рис. 254.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Фрактальная геометрия природы»

Представляем Вашему вниманию похожие книги на «Фрактальная геометрия природы» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Фрактальная геометрия природы»

Обсуждение, отзывы о книге «Фрактальная геометрия природы» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x