Предположим, Алиса собралась отправить тайное послание Бобу. Предварительно они условились о том, какое значение будут иметь большие простые числа p и q (каждое должно состоять по меньшей мере из 100 знаков), и перемножили их, чтобы получить M = pq . При желании они даже могут обнародовать это число. Также они вычисляют K = ( p − 1)( q − 1), но этот результат держат в секрете.
Теперь Алиса представляет свое послание как число x в пределах от 0 до M – 1 (или последовательность таких чисел, если послание длинное). Для кодирования она выбирает число a , не имеющее общих множителей с K , и вычисляет y = – x a (mod M ). Число a должно быть известно Бобу, его также можно не скрывать.
Чтобы расшифровать сообщение, Бобу необходимо знать b , удовлетворяющее условию ab ≡ 1 mod K . Это число (которое существует и уникально) держится в тайне. Чтобы расшифровать y , Боб вычисляет:
y b (mod M ).
Почему это можно дешифровать? Потому что
y b ≡ ( x a ) b ≡ x ab ≡ x 1≡ x (mod M ),
согласно обобщению Малой теоремы Ферма, сделанному Эйлером.
Этот метод вполне практичен, поскольку существуют эффективные тесты для поиска больших простых чисел. Но пока нет действенного способа искать простые множители для больших чисел. А значит, даже зная произведение pq , посторонний не сможет вычислить p и q , а без этого невозможно найти значение b – ключ ко всему шифру.
Ситуация кардинально изменилась, когда за дело взялся Гаусс и открыл общие концептуальные основы теории чисел, такие как модульная арифметика. Также своими исследованиями свойств правильных многоугольников он связал теорию чисел с геометрией. С этого момента теория чисел превратилась в заметную нить на пестром ковре математики.
Интуиция Гаусса привела математиков к открытию принципиально новых структур – новых числовых систем, таких как целые числа по mod n , а также математических действий, таких как композиция квадратичных форм. Благодаря новым открытиям теория чисел конца XVIII – начала XIX в. породила абстрактную алгебру конца XIX – начала XX в. Математики уже не боялись выходить за рамки привычных концепций и структур в своих исследованиях. Несмотря на узкоспециализированную тему, «Арифметические исследования» стали значительной вехой на пути создания современного подхода к математике в целом. И это одна из причин, почему математики так высоко оценивают роль Гаусса.
Вплоть до конца XX в. теория чисел пребывала в рамках чистой математики – любопытная сама по себе, с многочисленными способами приложения к собственно математическим исследованиям. Но она всё еще не играла особой роли для остального мира. Однако всё изменилось с момента изобретения цифровой связи в конце XX в. Как только она стала полностью зависеть от чисел, теория чисел предсказуемо оказалась на переднем крае. Чтобы хорошая математическая идея обрела практическое значение, могут уйти годы – а иногда даже сотни лет, – но рано или поздно любая область, некогда считавшаяся важной только среди математиков, находит дорогу в реальный мир и занимает там подобающее ей место.
Изобретение исчисления
Самым значительным прорывомв истории математики можно считать исчисление, независимо открытое примерно в 1680 г. Исааком Ньютоном и Готфридом Лейбницем. Лейбниц первым опубликовал свой труд, но Ньютон – подталкиваемый патриотично настроенными друзьями – заявил о своем первенстве и обвинил Лейбница в плагиате. Этот конфликт почти на 100 лет разорвал связи между английскими математиками и учеными с континента, и в итоге в проигрыше оказались англичане.
Хотя Лейбниц скорее мог бы претендовать на первенство в открытии исчисления, Ньютон превратил его в главную технику зарождающейся отрасли науки – классической физики, позже ставшей главным инструментом в познании человечеством мира природы. Сам Ньютон назвал свою теорию «Система мира». Пожалуй, звучит не очень скромно, зато точно определяет предмет. До Ньютона представления людей о законах природы в основном исходили из идей Галилея о движении тел, в частности параболической траектории полета пушечного ядра, а также открытой Кеплером эллиптической формы орбиты Марса в небесах. После Ньютона математические формулы пронизали почти все области физического мира: движение земных и небесных тел, потока воздуха и воды, передачи тепла, света, звука, силу тяготения.
Читать дальше