Йэн Стюарт - Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]

Здесь есть возможность читать онлайн «Йэн Стюарт - Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2019, ISBN: 2019, Издательство: Литагент МИФ без БК, Жанр: Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Профессор Иэн Стюарт в увлекательной манере и с юмором рассказывает о том, как развивалась математика – с древнейших времен и до наших дней. Он рассматривает наиболее значимые темы и события, обращая особое внимание на их прикладной характер.
Вы познакомитесь с виднейшими математиками своих эпох, а также узнаете, как то или иное математическое открытие повлияло на нас и нашу историю.
Эта книга для математиков и всех, кто интересуется историей математики и науки вообще.
На русском языке публикуется впервые.

Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres] — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Главной ошибкой здесь является восприятие математики как очевидного, буквального толкования реальности, наблюдаемой непосредственно. Но фактически мы окружены объектами, которые лучше всего будут описаны с помощью большого количества переменных, «степеней свободы» этих объектов. Например, для описания положения скелета человека требуется 100 переменных. Математически естественное описание таких объектов происходит в терминах многомерных пространств, с одним измерением для каждой переменной.

Математикам потребовалось много времени, чтобы формализовать такие описания, и еще больше на то, чтобы убедить остальных, что от этого есть польза. Сегодня всё это так глубоко вошло во все области науки, что используется практически на рефлекторном уровне. Подходы стандартны для экономики, биологии, физики, инженерии, астрономии… список можно продолжать бесконечно.

Главное преимущество многомерной геометрии в том, что человечество получило возможность визуализировать такие сверхсложные задачи, которые в принципе увидеть нельзя. А поскольку эволюционно наш мозг приспосабливался именно к визуальному мышлению, такой прием чаще приводит к неожиданным прозрениям, гораздо труднее достигаемым другими методами. Математические концепции, изначально не имеющие прямого отношения к реальному миру, часто обладают гораздо более глубокими, хотя и незримыми, связями. И эти скрытые связи делают математику такой полезной.

ЧТО МНОГОМЕРНАЯ ГЕОМЕТРИЯ ДАЕТ НАМ

Прекрасный пример использования многомерных пространств – ваш мобильный телефон. То же относится к выходу в интернет, кабельному или спутниковому телевидению и практически к любой современной технологии, обеспечивающей обмен информацией. Все современные коммуникации – цифровые. Информация – даже разговоры по телефону – переводится в сочетания нулей и единиц – двоичные числа.

От коммуникаций не будет большого толку, если они ненадежны: отправленное послание должно точно соответствовать полученному. Электрические послания по проводам не могут обеспечить такую надежность из-за помех, возникающих вследствие интерференции или даже космического луча, который может вызвать ошибки. И инженерам-электронщикам пришлось прибегнуть к математическим методам для такой кодировки сигналов, где ошибки будут не только распознаваться, но и исправляться. А основой таких кодов стала математика многомерных пространств.

Такие пространства были открыты, потому что строку, скажем, из десяти двоичных чисел, или бит, такую как 1001011100, выгоднее рассмотреть как точку в десятимерном пространстве с координатами, упрощенными до 0 или 1. Многие важные вопросы о кодах, обнаруживающих и исправляющих ошибки, лучше всего решать в рамках геометрии такого пространства.

Геометрия для пары двоичных чисел Например мы можем обнаружить но не - фото 202

Геометрия для пары двоичных чисел

Например, мы можем обнаружить (но не исправить) одну ошибку, если закодируем каждое послание, заменяя каждый 0 на 00 и каждую 1 на 11. Тогда такое послание, как 110100, превратится в 111100110000. Если его получат в виде 11 1000110000, с ошибкой в четвертом бите, мы поймем: что-то не так, ведь выделенная жирным пара 10 не должна там присутствовать. Но нам неизвестно, должно ли это быть 00 или 11. Это можно точно проиллюстрировать на двумерной фигуре (где 2 – длина, которая соответствует кодовым словам 00 и 11). Рассматривая биты в кодовых словах как координаты, относящиеся к двум осям (соответственно для первой и второй цифр в кодовом слове), мы можем начертить схему, где настоящие кодовые слова 00 и 11 окажутся в диагонально противоположных углах квадрата.

Код исправляющий ошибки использует строки длиной 3 Любая ошибка переведет их - фото 203

Код, исправляющий ошибки, использует строки длиной 3

Любая ошибка переведет их в кодовые слова на двух других углах – не являющиеся действительными (их мы изначально не включили в код) кодовыми словами. Но поскольку эти углы смежны с обоими настоящими кодовыми словами, разные ошибки могут привести к одному результату. Чтобы получить код, исправляющий ошибки, мы можем использовать кодовые слова длиной 3 и закодировать 0 как 000, а 1 как 111. Теперь кодовые слова находятся по углам куба в трехмерном пространстве. Любая единичная ошибка приведет в результате к соседнему кодовому слову; более того, каждое недействительное кодовое слово соседствует только с одним действительным: 000 или 111.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]»

Представляем Вашему вниманию похожие книги на «Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]»

Обсуждение, отзывы о книге «Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x