Йэн Стюарт - Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]

Здесь есть возможность читать онлайн «Йэн Стюарт - Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2019, ISBN: 2019, Издательство: Литагент МИФ без БК, Жанр: Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Профессор Иэн Стюарт в увлекательной манере и с юмором рассказывает о том, как развивалась математика – с древнейших времен и до наших дней. Он рассматривает наиболее значимые темы и события, обращая особое внимание на их прикладной характер.
Вы познакомитесь с виднейшими математиками своих эпох, а также узнаете, как то или иное математическое открытие повлияло на нас и нашу историю.
Эта книга для математиков и всех, кто интересуется историей математики и науки вообще.
На русском языке публикуется впервые.

Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres] — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

( x, y ) + ( u, v ) = ( x + u, y + v )

( x, y )( u, v ) = ( xu – yv, xv + yu ).

При таком подходе пара вида ( x , 0) ведет себя как действительное число x , а особая пара (0, 1) – как i . Идея проста, но для ее принятия потребовалось изобрести изощренную концепцию математического мировосприятия.

Следом Гамильтон обратил свое внимание на нечто более амбициозное. Было хорошо известно, что комплексные числа дают возможность разрешить множество проблем математической физики, связанных с задачами на плоскости, используя простые и изящные методы. Такому же приему для трехмерного пространства не было бы цены. И ученый попытался изобрести трех мерную числовую систему в надежде, что соответствующие вычисления решат важные проблемы математической физики в трехмерном пространстве. Он по умолчанию предположил, что эта система будет удовлетворять всем обычным законам алгебры. Но, несмотря на героические усилия, он так и не нашел такую систему.

А потом он понял почему. Это было невозможно.

Среди общепринятых законов алгебры имеется коммутативный закон умножения , согласно которому ab = ba . Гамильтон потратил годы на то, чтобы создать эффективную алгебру для трех измерений. И он все-таки нашел ее – числовую систему под названием кватернионы . Однако это была алгебра для четырех измерений, а не для трех, и здесь умножение не было коммутативно.

Кватернионы похожи на комплексные числа, но вместо одного нового числа i здесь их три: i, j, k . Кватернион является комбинацией этих чисел, например 7 + 8 i – 2 j + 4 k . Точно так же, как комплексные числа двумерны, поскольку составлены из двух независимых величин 1 и i , кватернионы четырех мерны, так как составлены из независимых величин 1, i, j и k . Они могут быть формально определены алгебраически как четверки действительных чисел со своими правилами сложения и умножения.

Многомерное пространство

Когда Гамильтон совершил прорыв, математики уже принимали многомерные пространства как нечто вполне естественное и даже открыли ряд физических толкований того, почему основными элементами пространства может быть что-то кроме точек. В 1846 г. Юлиус Плюккер указывал, что для описания линии в пространстве необходимы четыре числа. Два определяют, где линия пересекает некую фиксированную плоскость, а еще два – направление относительно этой плоскости. Значит, если наше знакомое пространство считать набором линий , оно имеет не три, а четыре измерения. Но оставалось ощущение, что такое построение чересчур умозрительно и что пространство, образованное четырьмя измерениями, неестественно. Кватернионы Гамильтона можно естественным образом проинтерпретировать как вращения, и их алгебра безупречна. Они так же естественны, как комплексные числа, – а значит, и четырехмерное пространство так же естественно, как плоскость.

Идея быстро вышла за рамки четырех измерений. Гамильтон продвигал свои возлюбленные кватернионы, а преподаватель математики Герман Гюнтер Грассман в это время занимался открытием расширения числовой системы для пространства с любым количеством измерений. Он опубликовал свою идею в 1844 г. в своем «Учении о линейной протяженности». Его выкладки оказались слишком загадочными и абстрактными, поэтому не привлекли особого внимания. В 1862 г., не желая с этим мириться, ученый выпустил переработанную версию своего труда, «Учение о протяженности», уверенный, что на этот раз материал изложен более доступно. Увы, это было не так.

Несмотря на холодный прием, работа Грассмана была фундаментально важной. Он открыл, что можно заменить четыре единицы 1, i, j и k кватернионов любым количеством единиц. Комбинации последних он назвал гиперчислами . Он отдавал себе отчет в том, что его подход имеет ограничения, ему стоит быть осторожным и не возлагать лишних надежд на арифметику гиперчисел: рабское подчинение законам традиционной алгебры никуда его не приведет.

Тем временем физики развивали свое в и дение многомерных пространств, опираясь не на геометрию, а на уравнения Максвелла для электромагнетизма. Здесь и магнитное, и электрическое поля были векторами – обладали направлением в трехмерном пространстве наряду со скалярной величиной (численным значением). Векторы при желании изображаются стрелками, выстроенными в линии магнитного или электрического поля. Длина стрелки показывает силу поля, а острие – направление, куда оно обращено.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]»

Представляем Вашему вниманию похожие книги на «Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]»

Обсуждение, отзывы о книге «Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x