Йэн Стюарт - Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]

Здесь есть возможность читать онлайн «Йэн Стюарт - Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2019, ISBN: 2019, Издательство: Литагент МИФ без БК, Жанр: Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Профессор Иэн Стюарт в увлекательной манере и с юмором рассказывает о том, как развивалась математика – с древнейших времен и до наших дней. Он рассматривает наиболее значимые темы и события, обращая особое внимание на их прикладной характер.
Вы познакомитесь с виднейшими математиками своих эпох, а также узнаете, как то или иное математическое открытие повлияло на нас и нашу историю.
Эта книга для математиков и всех, кто интересуется историей математики и науки вообще.
На русском языке публикуется впервые.

Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres] — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Гипотеза Пуанкаре стала столь знаменитой по другой причине: она была включена в список восьми математических задач тысячелетия, составленных Институтом Клея, и за их решение – подкрепленное вескими доказательствами – можно получить приз в миллион долларов. Но у Перельмана оказалась своя особая причина не желать этой награды – вернее, не желать никакой награды, кроме самого решения, поэтому ученый и не имел особого стимула расшифровать свои малопонятные наброски на arXiv в нечто более достойное публикации.

ГРИГОРИЙ ПЕРЕЛЬМАН род. 1966
Перельман родился в 1966 г в стране называвшейся тогда СССР Он выиграл - фото 196

Перельман родился в 1966 г. в стране, называвшейся тогда СССР. Он выиграл золотую медаль, набрав 100 %-ный результат в школьной Международной олимпиаде по математике. Перельман работал и в США, и в Институте Стеклова в Санкт-Петербурге, но так и не получил преподавательской должности. Его замкнутый и неуживчивый характер стал очередным дополнением к расхожему представлению о математиках как о людях не от мира сего. Остается только пожалеть, что его история усиливает стереотип эксцентричного математика.

Эксперты в этой области науки были вынуждены предлагать свои версии развития его идеи, стараясь заполнить пробелы в его логике и в итоге добившись результата, приемлемого в качестве доказательства. Некоторые из таких исследований были опубликованы, и понятная и четкая версия доказательства Перельмана одобрена сообществом топологов. В 2006 г. ему присудили медаль Филдса за исследования в этой области, но и от этого приза ученый отказался. Как видим, не всех манит мировая слава.

Топология и реальный мир

Топологию изобрели, поскольку математика не могла функционировать без нее; это было вызвано решением ряда основных вопросов в областях вроде комплексного анализа. Она решает вопрос «Какова форма этого предмета?» в очень простом, но глубоком виде. Более привычные геометрические понятия, такие как длина, теперь можно было рассматривать как дополнительные свойства к основной информации, полученной с помощью топологии.

Когда-то было высказано несколько первых топологических идей, но лишь к середине XIX в. топология стала полноправной областью математической науки со своими сущностью и влиянием, когда у математиков сложилось достаточно полное представление о топологии плоскостей, или двумерных форм. Расширение исследований на более многомерные пространства приняло бурный характер в конце XIX – начале XX в., во многом благодаря работам Анри Пуанкаре. Дальнейшие важные шаги были совершены в 1920-х гг. Новый взлет в этой области приходится на 1960-е, хотя по иронии судьбы именно тогда топология окончательно ушла от привычной нам прикладной науки.

Разбив аргументы традиционных критиков чистой математики в ХХ в., развившаяся в результате теория стала неотъемлемой частью многих областей математической физики. Ученым удалось справиться даже с самой ее неразрешимой проблемой, а именно гипотезой Пуанкаре. Сейчас уже ясно, что главными препятствиями для развития топологии всегда становились ее внутренние противоречия, лучше всего решаемые с помощью абстрактных понятий. Ее связям с реальным миром пришлось подождать, пока не были до конца отработаны основные техники исследования.

ЧТО ТОПОЛОГИЯ ДАЕТ НАМ

В 1956 г. Джеймс Уотсон и Френсис Крик открыли тайну строения двойной спирали молекулы ДНК – основы, на которой записывается и хранится генетическая информация. Сегодня топология узлов используется для понимания того, как распутать две нити спирали, определяющих схему развития всякого живого организма.

Спираль ДНК напоминает двужильную веревку, где одна жила виток за витком закручена вокруг другой. При делении генетическая информация попадает в обе новые клетки благодаря тому, что пряди спирали расплетаются и копируются, чтобы потом образовать пару. Любой, кому приходилось расплетать достаточно длинный обрезок обычной веревки, знает, как это трудно: нити норовят закрутиться в узлы в ответ на любую попытку их разделить. В случае ДНК всё еще хуже: сами спирали свернуты, как будто канат смотан в катушку. Представьте себе километровые нити, закрученные в подобие теннисного мяча, и вы получите отдаленное представление о сложной структуре ДНК в клетке.

Генетической биохимии остается лишь искать способы сплетать и расплетать эти нити достаточно точно, аккуратно и быстро: на них держится сама жизнь! Но как этого добиться? Биологи научились с помощью ферментов разрезать цепочку ДНК на куски, достаточно короткие для подробных исследований. Любой сегмент ДНК представляет собой сложный молекулярный узел, причем один и тот же узел может стать неузнаваемым после неких манипуляций, искажающих его вид.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]»

Представляем Вашему вниманию похожие книги на «Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]»

Обсуждение, отзывы о книге «Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x