Это чувство, для которого нет, вероятно, правильного названия, способно овладеть людьми вне зависимости от их возраста, профессии или гражданства.
Химиков еще в начале нашего века увлекла идея создать соединения, в которых молекулы держатся друг за друга без всякой химической связи, исключительно благодаря тому, что они продеты одна сквозь другую как кольца — наподобие той фигуры, что определяет собой структуру этой книги. Для таких антихимических монстров придумали даже название — катенаны (от латинского "катена" — цепь), но лишь в середине шестидесятых годов Г. Шилл и А. Люттрингауз после десятилетней упорной работы и многих тысяч неудачных опытов сумели наконец получить первый катенан. Синтез его состоял из нескольких десятков стадий, и лишь на последней из них разрывалась последняя химическая связь, и кольца оставались соединенными чисто механически. Однако понадобилось еще создать метод доказательства, что все на самом деле обстоит именно таким образом: кольца продеты одно в другое, но химически ничем не связаны. Его предложил Рэмир Григорьевич Костяновский, доктор химических наук. Он придумал, как применить в этом случае масс-спектральный анализ. Все эти сложные и сложнейшие приемы и методы долгим и тернистым путем вели к получению катенана, состоявшего всего из двух сцепленных колец. Но не прошло и десяти лет, как ту же конструкцию химики получили совсем иным путем. Они использовали удивительные свойства нашего старинного знакомого — листа Мёбиуса. Цирковые фокусы, при которых разрезанное кольцо превращается в два сцепленных между собой, заменили собой точнейшую аппаратуру.
Но и тут не конец геометрическому вторжению в жизнь живой и неживой материи. Ведь если полоску бумаги — или длинную молекулу — повернуть перед склеиванием не на один и не на два, а на три оборота, то, разрезав ее, мы получим трилистник — такой, какие изображены на гравюрах Эсхера "Узлы". Особенно интересен левый верхний узел ("Узлы. 1965): про него не просто сказать, что это — односторонняя лента дважды, да еще вдобавок самопересекаясь обегает узел-трилистник или же два независимо существующих листа Мёбиуса?
"Теория узлов, одна из самых старых частей алгебраической топологии, принадлежит к числу тех разделов математики, где ставить "естественные" вопросы гораздо легче, чем отвечать на них. Поэтому, несмотря на то, что ею занимаются многие математики уже почти девяносто лет, полученные в ней результаты довольно скромны и многие основные проблемы все еще ждут своего решения. Особенно парадоксально то, что в теории узлов зачастую проблемы многомерной топологии решаются гораздо легче, чем аналогичные им проблемы в обычном трехмерном пространстве", — написано в предисловии к книге Ричарда Кроуэлла и Ральфа Фокса "Введение в теорию узлов". А сами авторы начинают ее такими словами: "Теория узлов представляет собой часть геометрии, привлекательную тем, что изучаемые в ней объекты можно воспринимать и осмысливать в обычном физическом мире. Она — место стыка таких разных разделов математики, как теория групп, теория матриц, теория чисел, алгебраическая и дифференциальная геометрия (мы называем лишь наиболее важные разделы). Ее истоки лежат в математической теории электричества и элементарной атомной физике, а недавно наметилась возможность ее новых приложений в некоторых областях химии".
Таким образом, узлы — не только предмет исследования для топологов, "деталь" первой необходимости для такелажников и моряков и обязательный "инвентарь" для фокусников-спиритов вроде Генри Слейда. Они еще оказались в фокусе внимания химиков и даже медиков. Сейчас сразу несколько групп исследователей в разных странах работают над тем, чтобы создать искусственным путем заузленные молекулы. В числе прочих, разумеется, проверяется и "мёбиусный" путь. Усилия ученых подогреваются тем недавно открытым фактом, что в клетках, пораженных раком, резко повышено содержание катенановых — "скольцованных" — молекул ДНК. Советским ученым посчастливилось обнаружить заузленную молекулу РНК. Встречаются в живой ткани и иные топологические диковинки. Все это говорит об одном: возможно, многие проблемы медицины и биохимии будут когда-нибудь решены благодаря геометрическому образу мышления, такому, какой был, например, у Джеймса Клерка Максвелла.
Пока же подход этот успешно реализуется в более "практичных" областях. Р. Г. Костяновский полагает, например, что молекулы ряда полимеров могут образовывать переплетающиеся между собой кольца. Эластичность такого вещества перекроет все мыслимые рекорды: оно будет растягиваться во многие тысячи раз и не рваться при этом. А вот один из последних примеров уже осуществленного "практически-геометрического" решения — авторское свидетельство, выданное В. С. Кравченко и В. А. Ткачеву: "Рабочий орган культиватора-плоскореза, включающий стойку, в нижней части которой укреплена стрельчатая лапа, отличающийся тем, что, с целью обеспечения самоочистки стойки от растительных остатков, последняя в нижней своей части изогнута по форме поверхности Мёбиуса".
Читать дальше