* * *
Исследование, которое сделало Буля широко известным среди математиков и специалистов по информатике – и вообще в любом доме, где пользуются Гуглом, поскольку это вариант Булева поиска, – все больше занимало его мысли. Буль всегда видел в математических понятиях внутреннюю простоту. Ему нравилось формулировать общие принципы, выражать их в символьной форме – и дальше за него думали символы. В «Законах мышления» эта программа была реализована для правил формальной логики. Главной идеей произведения была интерпретация этих правил как алгебраических операций с символами, представляющими некие утверждения. Поскольку логика – не арифметика, некоторые из обычных алгебраических правил в ней могут оказаться неприменимы; с другой стороны, в ней могут возникнуть новые законы, не применимые к арифметике. Результат, известный как Булева алгебра, позволяет доказывать логические утверждения посредством алгебраических вычислений.
Книга начинается с предисловия, которое выдержано в уважительном тоне и обозначает место предлагаемой дискуссии в контексте существующей философии. Затем Буль переходит к существу дела – к математике – и для начала предлагает обсудить использование символов. Он поясняет, что речь идет о символах (он называет их «знаками»), представляющих логические утверждения, и особенно сосредоточивается на общих законах, которым они подчиняются. Он говорит, что будет обозначать класс, или набор, объектов, к которым применимо определенное общее имя, одной буквой, к примеру x . Если общее имя – «овца», то x – это класс всех овец. Класс может описываться прилагательным, к примеру «белый»; в этом случае мы получаем класс y всех белых объектов. Тогда произведение xy обозначает класс всех объектов, обладающих обоими свойствами, то есть класс всех белых овец. Поскольку этот класс не зависит от порядка, в котором называются определяющие его качества, то xy = yx . Аналогично если z – некоторый третий класс (в примере Буля x = реки, y = устья, z = судоходные), то ( xy ) z = x ( yz ). Это коммутативный (переместительный) и ассоциативный (сочетательный) законы стандартной алгебры в интерпретации, приспособленной к новому контексту.
Он отмечает один закон, который принципиально важен для всего этого дела, но не выполняется в обычной алгебре. Класс xx есть класс всех объектов, обладающих свойством, определяющим x , и свойством, определяющим x , так что он должен совпадать с x . Следовательно, xx = x . Так, класс объектов, которые суть овцы и еще раз суть овцы, – это просто класс всех овец. Этот закон можно записать также как x 2= x , и он представляет собой первый пункт, в котором законы Булевой алгебры отличаются от законов мышления обычной алгебры.
Далее Буль переходит к знакам, «посредством которых мы собираем части в единое целое или делим целое на части». Положим, к примеру, что x есть класс всех мужчин, а y – класс всех женщин. Тогда класс всех взрослых людей – мужчин и женщин – обозначается x + y . Здесь опять же действует коммутативный закон, который Буль формулирует явно, и ассоциативный закон, подпадающий под обобщающее заявление о том, что «законы идентичны» с законами алгебры. Поскольку, к примеру, класс европейских мужчин или женщин – это то же самое, что класс европейских мужчин или европейских женщин, дистрибутивный закон z ( x + y ) = zx + zy тоже выполняется, если z – класс всех европейцев.
Вычитание может быть использовано для исключения части объектов из класса. Если x представляет мужчин, а y – азиатов, то x – y представляет всех мужчин, которые не являются азиатами, и z ( x – y ) = zx – zy .
Возможно, самой поразительной особенностью этих формулировок является то, что речь идет вроде бы вовсе не о логике. Речь идет о теории множеств. Вместо того чтобы манипулировать логическими утверждениями , Буль работает с соответствующими им классами , охватывающими те объекты, для которых эти утверждения верны. Математики давно распознали двойственность этих концепций: каждый класс соответствует утверждению «принадлежит к классу»; каждое утверждение соответствует «классу объектов, для которых это утверждение верно». Это соответствие переводит свойства классов в свойства связанных с ними утверждений и наоборот.
Буль вводит эту идею посредством третьего класса символов, «при помощи которых выражаются отношения и при помощи которых мы формируем высказывания». К примеру, представим звезды как x , солнца [22] Под «солнцами» автор подразумевает звезды с планетными системами. – Прим. ред.
как y и планеты как z . Тогда утверждение «звезды – это солнца и планеты» можно будет записать как x = y + z . Так что высказывания – это равенства между выражениями с участием классов. Несложно сделать вывод, что «звезды, которые не планеты, являются солнцами»; то есть x – z = y . «Это, – говорит нам Буль, – соответствует алгебраическому правилу транспозиции» (переноса). Аль-Хорезми узнал бы в этом правиле аль-мукабалу (см. главу 3).
Читать дальше
Конец ознакомительного отрывка
Купить книгу