В 16 лет Буль стал учителем в школе Хейгэма. Позже, сменив еще две учительские должности, он в возрасте 19 лет основал собственную школу в Линкольне; затем взял на себя руководство Академией Холла в Ваддингтоне. Его семья присоединилась к нему, чтобы помогать в управлении школой. Буль никогда не терял интереса к высшей математике, читал Лапласа и Лагранжа. Он открыл в Линкольне школу с пансионом и начал публиковать свои исследования в недавно основанном Cambridge Mathematical Journal .
В 1842 г. Буль начал переписку (которая продолжалась до конца его жизни) с близким ему по духу де Морганом. В 1844 г. он получил медаль Королевского общества, а в 1849 г. благодаря своей растущей репутации был назначен первым профессором математики в Королевском колледже Корка (Ирландия). Там в 1850 г. он встретил свою будущую жену Мэри Эверест (племянницу Джорджа Эвереста, осуществившего первую серьезную геодезическую съемку Индии, в результате чего в его честь была названа высочайшая гора Земли). Они поженились в 1855 г. и родили пятерых замечательных дочерей: Мэри вышла замуж за математика и писателя Чарльза Говарда Хинтона, блестящего негодяя; Маргарет – за художника Эдварда Ингрэма Тейлора; Алисия под влиянием Хинтона провела серьезное исследование четырехмерных правильных многогранников; Люси стала первой в Англии женщиной – профессором химии; наконец, Этель вышла замуж за польского ученого и революционера Вильфреда Войнича и написала роман «Овод».
* * *
Среди ранних работ Буля есть одно простое открытие, приведшее в конечном итоге к созданию теории инвариантов – области алгебры, оказавшейся внезапно на самом острие науки. При исследовании алгебраических уравнений формулу иногда можно упростить, если заменить переменные в ней подходящими выражениями с новым набором переменных. Решаем это упрощенное уравнение, находим значения новых переменных, затем отступаем назад и находим значения первоначальных. Именно так решали уравнения в Вавилоне и в Европе эпохи Возрождения.
Особенно существенный класс изменений переменных наблюдается в тех случаях, когда новые переменные представляют собой линейные комбинации старых – выражения вроде 2 x – 3 y , не включающие в себя более высоких степеней или произведений старых переменных x и y . Таким способом можно упростить, к примеру, обобщенную квадратичную форму
ax 2+ bxy + cy 2
с двумя переменными. Важной величиной в теории таких форм играет так называемый дискриминант b 2 – 4 ac . Буль открыл, что после линейного изменения переменных дискриминант новой квадратичной формы равен дискриминанту оригинала, умноженному на коэффициент, определяемый только методом изменения переменных.
Такое на первый взгляд совпадение имеет геометрическое объяснение. Это действительно совпадение в том смысле, что два свойства, обычно отдельные, совпадают. Если приравнять квадратичную форму к нулю, ее решения определят две (возможно комплексные) кривые… если только дискриминант не равен нулю; в этом случае мы получаем одну и ту же кривую дважды . При этом квадратичная форма представляет собой квадрат ( px + qy ) 2некоторой линейной формы. Изменение координат – это геометрическое искажение, преобразующее первоначальные кривые в соответствующие кривые для новых переменных. Если две кривые совпадали для первоначальных переменных, они совпадут и для новых. Так что дискриминанты должны быть связаны таким образом, что, если один из них обращается в нуль, то же самое делает и второй. Инвариантность – формальное название для такого соотношения.
Наблюдение Буля, связанное с дискриминантом, казалось всего лишь забавным фактом, до тех пор пока несколько математиков, самыми известными среди которых были Артур Кэли и Джеймс Джозеф Силвестр, не обобщили его для форм более высокого порядка с двумя или большим числом переменных. Эти выражения тоже имеют инварианты, влияющие также на значимые геометрические свойства связанной с ними гиперповерхности, определяемой приравниванием этой формы нулю. Из этого выросла целая отрасль, где математики зарабатывают себе рыцарские шпоры, вычисляя инварианты все более сложных выражений. Позже Гильберт (глава 19) доказал две фундаментальные теоремы, которые закрыли эту тему практически целиком, до тех пор пока она не ожила в более общей форме. Она и сегодня представляет интерес и имеет важные применения в физике, а новую жизнь ей придало развитие компьютерной алгебры.
Читать дальше
Конец ознакомительного отрывка
Купить книгу