
Задача о кёнигсбергских мостах звучит так: можно ли обойти все четыре части города, пройдя при этом по каждому из мостов ровно один раз? Эйлер показал, что такого пути не существует, и определил, при каких условиях подобные задачи имеют решение.
Наконец, Гаусс, внесший огромный вклад в математику, также уделял время занимательным задачам, среди которых задача о восьми ферзях: нужно расположить на шахматной доске восемь ферзей так, чтобы ни один из них не находился под боем другого. Также нужно найти количество разных решений и обобщить задачу для n ферзей и доски n × n. Используя интуитивный метод, а затем систематизировав его и переформулировав задачу в терминах перестановок, Гаусс показал, что задача имеет 92 различных решения.

На этой доске размером 8x8 показано одно из решений задачи о восьми ферзях.
ПАРАДОКС ХУПЕРА
В этой головоломке дан квадрат со стороной 8 клеток, разделенный на два треугольника и две трапеции. Из этих же фигур составляется прямоугольник размерами 5x13 клеток. Получается, что площадь квадрата (64 клетки) равна площади прямоугольника (65 клеток), и это «доказывает», что 64 равно 65. Читатель обнаружит, что составить подобный прямоугольник невозможно, и увидит, где же скрывается «дырка» площадью в 1 клетку.
Даже если считать парадокс решенным, он не перестает представлять интерес с точки зрения математики. Если проанализировать задачу подробнее, становится ясно, что она далеко не так проста. Если расположить длины сторон фигур в порядке возрастания, получим 3,5,8,13 — числа Фибоначчи. Эта последовательность имеет такое свойство: квадрат произвольного члена последовательности равен произведению предыдущего члена на последующий плюс (или минус) 1. Иными словами, a n 2=а n-1· а n+1+(-1) n+1. Таким образом, взяв квадрат со стороной, равной одному из чисел Фибоначчи, и прямоугольник, стороны которого равны предыдущему и последующему числам Фибоначчи, мы снова получим такой же парадокс. Этот парадокс разрешим, и подобное построение можно выполнить корректно для числа Ф, описывающего золотое сечение, которое тесно связано с числами Фибоначчи: взяв квадрат со стороной Ф и разделив его на четыре части, получим прямоугольник со сторонами 1 и Ф + 1. Площадь квадрата (Ф 2) будет точно равна площади прямоугольника 1 · (Ф + 1).


Парадокс Хупера гласит, что из двух треугольников и двух трапеций, образующих квадрат, можно составить прямоугольник большей площади.
Игры и занимательная математика в XIX и XX веках
Игры и занимательная математика непрерывно развивались в течение XIX и начала XX веков, и спектр задач неуклонно расширялся. Среди авторов XIX века следует упомянуть Джеймса Джозефа Сильвестра (1814—1897), Льюиса Кэрролла (1832—1898), Эдуарда Люка (1842—1891) и Уильяма Роуза Болла (1850—1925). Рассказать обо всех подробно просто невозможно, и далее мы остановимся на книгах Кэрролла и Люка.
Преподобный Чарльз Латуидж Доджсон, известный как Льюис Кэрролл, автор сказок об Алисе, был математиком и профессором Оксфорда. Он обожал занимательную математику и планировал издать серию книг под названием Curiosa Mathematica («Математические курьезы»). Завершить этот труд ему не удалось. Во второй книге этой серии под названием «Полуночные задачи, придуманные в часы бессонницы» он демонстрирует выдающиеся способности, приводя решения как простейших и шутливых («Есть двое часов. Одни стоят, другие опаздывают на одну минуту. Какие часы показывают время точнее?»), так и довольно сложных задач («Даны три произвольные точки на бесконечной плоскости. Какова вероятность того, что они образуют тупоугольный треугольник?»).

Знаменитый автор «Алисы в стране чудес»Льюис Кэрролл также придумал бесчисленное множество математических игр.
Кэрролл был не только гениальным автором математических и логических игр, но и великим знатоком английского языка, что можно увидеть в его книгах об Алисе и в многочисленных придуманных им играх со словами. Одна из них, «Лестница слов», заключается в том, что нужно построить цепочку из слов с одинаковым количеством букв, каждый раз меняя по одной букве в слове. Например, можно превратить козу в волка: КОЗА — ПОЗА — ПОЛА — ПОЛК — ВОЛК.
Читать дальше