Игры и математика с XVII века до наших дней
Серьезная и занимательная математика существовали бок о бок с древнейших времен. Однако в начале XVII века появляется особое ответвление, посвященное анализу игр. Как уже говорилось в начале предыдущего раздела, в 1612 году была опубликована первая книга, посвященная исключительно занимательной математике, — Problemes plaisants et delectables qui se font par les nombres Клода Гаспара Баше де Мезириака (1581—1638). Этот математик, поэт и переводчик, который был одним из первых членов Французской академии наук, известен не только как автор этой книги, но и как автор комментария к переводу «Арифметики» Диофанта с греческого на латинский язык (1621). На полях одного из экземпляров именно этой книги Ферма записал свою знаменитую теорему (подробнее о нем мы поговорим в главе 3).

Обложка книги«Арифметика»Диофанта на латинском языке с комментариями Баше де Мезириака.
Золотой век математических игр: XVII и XVIII века
Книга де Мезириака — своеобразный конспект по занимательной математике той эпохи. В ней описана задача о волке, козе и капусте, магические квадраты, задачи о целых числах и взвешиваниях, например: «Найти минимальное число гирь и их массу, с помощью которых на простых весах с двумя чашками можно измерить любой вес, выраженный целым числом от 1 до 40».
Начиная с этого момента, уже в XVII веке появляется множество книг похожего стиля. В 1624 году Анри ван Эттен (это псевдоним французского иезуита Жана Лёрешона) опубликовал книгу Recreations mathematiques («Развлекательная математика»), которая стала более успешной, чем книга Баше, и послужила образцом для последующих изданий, среди которых работа Клода Мидоржа, изданная во Франции в 1630 году и переведенная на английский уже в 1633 году, или работа Даниэля Швентера, опубликованная в 1636 году в Германии. Но самой известной в XVIII и XIX веках стала книга Жака Озанама Recreations mathematiques et physiques («Математические и физические развлечения»), которую в 1725 году отредактировал и дополнил математик и историк науки Жан Этьен Монтукля.
Среди трудов XVIII века упоминания заслуживает книга Rational Recreations Уильяма Хупера («Рациональные развлечения», 1774), где впервые упоминается одна из задач об исчезновении клетки — великолепный пример того, как для решения простой с виду задачи используются интересные математические свойства.

Портрет математика и лингвиста Даниэля Швентера.
Хотя мы перечислили некоторых авторов книг об играх и занимательной математике, не будем забывать, что многие великие математики XVII—XIX веков сформулировали и впоследствии решили задачи, ставшие классикой жанра. Наиболее выдающиеся среди них — Исаак Ньютон (1642—1727), Леонард Эйлер (1707— 1783) и Карл Фридрих Гаусс (1777—1855).
Ньютон в своей книге Arithmetica Universalis («Универсальная арифметика»), написанной на латыни в 1707 году, наряду с важными для математики проблемами упоминает и о простейших занимательных задачах. Хотя наиболее известна так называемая задача о коровах, ниже мы приведем другую задачу, где показывается связь вероятностей и азартных игр. Одновременно бросается некоторое число обычных игральных костей. Вероятность какого из следующих событий наибольшая?
1) При броске 6 кубиков выпадет хотя бы одна шестерка.
2) При броске 12 кубиков выпадут хотя бы две шестерки.
3) При броске 18 кубиков выпадут хотя бы три шестерки.
Читатель с легкостью сможет решить эту задачу после того, как ознакомится с аналогичными задачами, о которых рассказывается в главе 3.
Эйлер, перу которого, возможно, принадлежит наибольшее число работ среди всех математиков, также написал множество занимательных книг, например по комбинаторике, посвященных греко-латинским квадратам. Речь идет о разновидности магических квадратов, в которых необходимо расположить n символов в квадрате n × n клеток так, чтобы в каждой строке и в каждом столбце находились все возможные символы. Можно сказать, что эти квадраты стали прообразом современных судоку. Но, вне всяких сомнений, самая известная из его задач — задача о кёнигсбергских мостах, которую Эйлер опубликовал на латыни в 1759 году в бюллетене Прусской академии наук. Эта задача дала начало теории графов. Граф — это графическое представление отношений между элементами множества, состоящее из вершин (элементов множества) и ребер, соединяющих вершины (связанные между собой элементы). Теория графов используется преимущественно для формулировки и решения задач оптимизации.
Читать дальше