Для подобных ситуаций экономист и математик Ллойд Шепли предложил распределение, пропорциональное числу возможных выигрышных коалиций, в которых данный игрок имеет определяющую роль (без него альянс не наберет нужного числа голосов). Платеж, получаемый каждым игроком, называется значением Шепли. Игрок не играет определяющую роль в коалиции, если его участие не обязательно для победы этой коалиции.
В нашем примере в альянсе, образованном всеми пятью партиями, ни одна из них не играет определяющую роль. Например, в коалиции БВГД партии Б и В играют определяющую роль: без их участия коалиция не наберет большинство (без партии Б коалиция будет иметь лишь 24 места, без партии В — 33). Напротив, Г и Д не играют определяющей роли: если одна из этих партий покинет коалицию, та сохранит большинство (без партии Г коалиции будет принадлежать 42 кресла, без партии Д — 45). Число коалиций, в которых определяющую роль играют те или иные партии, представлено в таблице ниже

Теперь мы можем распределить бюджет согласно модели Шепли. Допустим, что коалиция образована всеми партиями, и в их распоряжении находится бюджет в размере 2,6 млрд евро. Распределение по модели Шепли (в миллионах евро) выглядит так:
А = 1000,
Б = 600,
В = 600,
Г = 200,
Д = 200.
В любом другом альянсе каждая партия-участник получит часть общего бюджета согласно этим же правилам, и полученная сумма никогда не будет меньше полученной в составе этой коалиции. Это не единственное стабильное распределение, но для любой коалиции распределение, выполненное подобным образом, будет наиболее стабильным, и не будет способа, при котором суммы платежей для участников коалиции будут больше.
Метод фон Неймана, равно как и метод Шепли, показывает следующее: с одной стороны, решением является не единственное распределение, а множество распределений; с другой стороны, мы можем найти множество характеристик, которые помогут понять, является ли данное распределение частью «решения» или нет.
По прочтении двух последних глав читатель заметил, что чем сложнее анализируемые ситуации (и в то же время чем они ближе к реальности), тем менее категоричны математические методы, используемые при решении. Это не означает, что какое-то решение будет более корректным, чем другое. Это значит, что реальные ситуации, в которых сочетается сотрудничество и соперничество, обладают индивидуальными отличительными свойствами. Поэтому в применяемых математических методах нужно учитывать, что их корректность будет зависеть от данных конкретных свойств.
Comas, О., El mundo en juegos, Barcelona, RBA, 2005.
Corbalan, F., Juegos matematicos para secundaria у bachillerato, Segunda edition, Madrid, Sfntesis, 1998.
Davis, M.D., Introduction a la teoria de juegos, Col. Ensayo, Madrid, Alianza, 1998. DEULOFEU, J., Una recreation matematica: historias, juegos у problemas, Barcelona, Planeta, 2001.
—: Gimnasia mental 2, Madrid, Martinez Roca, 2003.
Gardner, M., Matematicas para divertirset Barcelona, RBA, 2007.
Lucas, E., Recreaciones matematicas, 4 vols, Madrid, Nivola, 2007-2008.
Mlllan, A., GlORGIO, I., El mundo сото un juego matematico. John von Neumann un tientifico del siglo XX, Madrid, Nivola, 2001.
Packel, E., Las matematicas de los juegos de apuestas, Col. La Tortuga de Aquiles 5, Madrid, DLS-EULER, 1995.
Poundstone, W., El dilema del prisionero. John von Neumann, la teoria de juegos у la bomba, Coleccion Ciencia у Tecnica, Madrid, Alianza, 2005.
Steen, L.A. у otros, Las matematicas en la vida cotidiana, Madrid, Addison-Wesley/ Universidad Autonoma de Madrid, 2006.