Определение оптимальной смешанной стратегии
Вспомним третью (последнюю) игру, о которой говорилось в первом разделе этой главы. Каждый из двух игроков может записать одно из двух чисел: игрок А может записать 1 или 8, игрок Б — 2 или 7. Если четность обоих чисел совпадает (они оба четные или оба нечетные), А выигрывает сумму, равную записанному им числу. Если же одно из чисел четное, а другое — нет, победа остается за игроком Б, который выигрывает сумму, равную записанному им числу. Матрица игры выглядит так:

Игра выглядит справедливой (игрок А может выиграть 1 или 8 евро, игрок Б — 2 или 7), седловой точки не существует: максиминное значение равно -2, минимаксное — 1. Поэтому ни для одного из игроков не существует чистой стратегии. Посмотрим, как в этом случае можно сформировать смешанную стратегию, которая будет оптимальной и позволит определить цену игры.
Смешанная стратегия — это некий «случайный» выбор одной чистой стратегии из набора. Чтобы сформировать смешанную стратегию, каждой чистой стратегии присваивается вероятность, означающая, с какой частотой игрок будет использовать эту чистую стратегию. Например, в нашем случае для игрока А есть две чистые стратегии (записать 1 или записать 8), для Б — две другие. Попробуем найти вероятности p( записать 1), p( записать 8) для игрока А и p( записать 7), p( записать 2) для игрока Б так, чтобы максимально повысить шансы каждого игрока на победу. Если мы определим вероятности и платежи для каждого случая, то сможем определить ожидаемый выигрыш.
Сначала нужно определить вероятности для чистых стратегий игрока А. Обозначим за р вероятность того, что этот игрок запишет 8. Тогда вероятность написания 1 будет равна 1 — р. Следовательно, если игрок Б запишет 7, ожидаемый выигрыш игрока А составит
V = 1 (1 - р) + (-7) р. Получим линейное уравнение V = 1 - 8р.
Если же, напротив, Б запишет 2, то ожидаемый выигрыш для игрока А составит
V = (-2)(1 - р) + 8р, что равносильно V = 10р — 2.
Игрок А хочет найти, для какого р ожидаемый выигрыш будет наибольшим вне зависимости от того, какую из двух стратегий выберет игрок Б. Решив систему из двух линейных уравнений, получим значения р и V для игрока А. В данной задаче р = 1/6, V = -1/3.
Аналогично можно найти смешанную стратегию для игрока Б. Обозначим за р вероятность того, что он запишет 2. Тогда вероятность того, что он напишет 7, будет равна (1 — р). Если А запишет 1, то ожидаемый выигрыш Б составит
V = 2р + ( -1) (1 - р), что равносильно V = Зр — 1.
Аналогично если А выберет другую стратегию и запишет 8, то ожидаемый выигрыш игрока Б составит
V = ( -8)р + 7 (1 - р), то есть V = 7 - 15р.
Игрок Б хочет найти, для какого р ожидаемый выигрыш будет наибольшим вне зависимости от того, какую из двух стратегий выберет игрок А. Решив систему из двух линейных уравнений, получим значения р и V для игрока Б. Результаты будут следующими: р = 4/9, V* = 1/3.
Метод, который мы только что применили, можно обобщить для матриц 2 × 2 и использовать для решения игр, которые не имеют седловой точки, в смешанных стратегиях. Проанализируем полученные результаты более подробно. Во-первых, заметим, что ожидаемые выигрыши совпадают (V = 1/3) и отличаются только знаком. Для А найденный выигрыш отрицательный, для Б — положительный. Это означает, что Б ожидает выиграть столько, сколько проиграет А. Цена игры (средний выигрыш игрока А) определяется с помощью уравнения (ad - bc)/(а + d - b - с), где a,b,c,d — элементы платежной матрицы (слева направо и сверху вниз). Так, в нашем случае цена игры равна (8 - 14)/18 = -6/18 = -1/3, что означает, что игрок А в среднем будет проигрывать 1 евро за каждые три партии, если оба игрока будут придерживаться оптимальных стратегий.
Теперь мы можем напрямую найти смешанные стратегии как для игрока А, так и для игрока Б. Соотношение, с которым игрок А должен применять смешанные стратегии, можно определить, если найти выигрыш и проигрыш для каждой строки матрицы. Так, его выигрыши равны 1 - (-2) = 3 (для первого ряда) и - 7 - 8 = -15 (для второго ряда). Следовательно, в рамках оптимальной стратегии игрок А должен действовать случайным образом, но соблюдать соотношение 15 к 3, или 5 к 1. Он должен записывать 1 в пять раз чаще (например, перед каждым ходом бросать обычный кубик, на пять граней которого нанесена цифра 1, а на одну грань — цифра 8). Заметим, что этот результат совпадает с тем, который мы получили, решив систему уравнений. Вероятность того, что игрок А запишет 8, должна равняться 1/6, следовательно, вероятность того, что он запишет 1, должна равняться 5/6.
Читать дальше