В отличие от рассказчиков анекдотов математики не запутались в этих рассуждениях и не пустились в бесконечные споры. Они смогли принять тот факт, что математика устроена именно так. Более того, многие задачи, остававшиеся нерешенными на протяжении многих лет, оказались утверждениями, которые невозможно ни доказать, ни опровергнуть, и в том, что никто не смог их решить, не было ничего удивительного [34] Например, было доказано, что так называемая континуум-гипотеза в традиционной аксиоматике теории множеств представляет собой гёделевское утверждение (Cohen 1966).
.
Прошли десятки лет, и американскому математику Абрахаму Робинсону пришло в голову, что было бы интересно добавить отрицание G к классической системе математики в качестве новой аксиомы [35] Robinson (1996); Goldblatt (1998).
. В конце концов, рассуждал он, в результате все равно получится математическая система, и если классическая математика непротиворечива — то есть в ней нет такого утверждения, которое можно и доказать, и опровергнуть, — то математика, полученная путем добавления одной этой аксиомы, тоже должна быть непротиворечивой. Если бы новая система оказалась противоречивой, в ней существовала бы возможность и доказать G , и опровергнуть G . Но поскольку единственное различие между старой и новой системами сводится к добавлению аксиомы об отрицании G , которую нельзя использовать для доказательства G , из этого следует, что доказательство G может быть возможно в новой системе, только если оно возможно и в старой, для которой Гёдель доказал его невозможность. Если бы новая система получилась противоречивой, в ней можно было бы получить как доказательство G , так и его опровержение, но, поскольку при помощи G невозможно получить опровержение G , из этого следует, что в исходной системе доказать G было невозможно. Следовательно, добавление отрицания G к классической математике дает непротиворечивую математическую систему — разумеется, если предположить, что классическая математика исходно непротиворечива.
Однако непротиворечивость классической математики — вещь далеко не очевидная. Хотя большинство математиков верит в истинность этой идеи, доказать ее не удалось никому. Тем не менее математики знают, что математика не может быть лишь немножко противоречивой. Сотни лет назад было доказано, что если бы в классической математике было одно-единственное противоречие, то для любого утверждения, которое может быть доказано, могло бы быть доказано и обратное утверждение. Таким образом, математика может быть либо абсолютно непротиворечивой, либо полной противоречий. Этого соображения математикам вполне достаточно, чтобы верить в ее непротиворечивость. Гёдель шокировал их и в этом отношении, потому что из его теоремы следует, что доказать непротиворечивость любой достаточно сложной системы математики внутри самой этой системы невозможно. Непротиворечивость всегда будет оставаться в некотором роде вопросом веры.
С учетом этого идея Абрахама Робинсона кажется абсурдной. В самом деле, он решил построить математическую систему, содержащую заведомо ложную аксиому. Как если бы я каким-то образом оказался не только мужчиной — а я мужчина, — но также и женщиной. Разумеется, в реальности такое невозможно (если не учитывать в этом примере гермафродитизма и бигендерности). Я не женщина, и на свете не существует никого, кто был бы мною и женщиной. Но в математике такие парадоксы возможны. Если классическая математика непротиворечива, то непротиворечивой должна быть и новая система, так как Робинсон получил ее добавлением независимой аксиомы. С математической точки зрения эта новая система будет такой же чистой и упорядоченной, как и старая. Поэтому в исследовании новой системы и рассмотрении теорем, которые можно из нее вывести, нет ничего дурного.
Оказывается, что при работе в новой системе придется переосмыслить сущность номеров доказательств в смысле гёделевской нумерации. Добавление опровержения G требует добавления некоего «обобщенного» натурального числа. Хофштадтер называет его «супернатуральным числом» [36] В математике есть супернатуральные числа, или числа Штайница, которые не имеют отношения к тем, что упоминаются здесь. «Супернатуральные числа» Хофштадтера — это гиперцелые числа, подкласс гипервещественных (они же гипердействительные), о которых и идет речь в главе. — Прим. ред.
, потому что в нем есть нечто почти чудесное. Чтобы дать этому супернатуральному числу имя, обозначим его буквой I , так как число это — плод нашего воображения, или, если обратиться к латыни, imaginatio . Вся традиционная математика по-прежнему прекрасно работает без I , а вся математика, использующая отрицание G , должна использовать I . Если вычисление, в котором используется I , дает результат, принадлежащий к области традиционной математики, то I из него исчезает — так же, как в некоторых вычислениях исчезает другой математический объект, который обозначают буквой i — мнимая единица: (1 + i ) × (1 — i ) = 2.
Читать дальше
Конец ознакомительного отрывка
Купить книгу