Владимир Арнольд - Теория катастроф

Здесь есть возможность читать онлайн «Владимир Арнольд - Теория катастроф» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 1990, Жанр: Математика, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Теория катастроф: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Теория катастроф»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Математическое описание катастроф — скачкообразных изменений, возникающих в виде внезапного ответа системы на плавное изменение внешних условий, дается теориями особенностей и бифуркаций. Их применения к конкретным задачам в разных областях науки вызвали много споров. В книге рассказывается о том, что же такое теория катастроф и почему она вызывает такие споры. Изложены результаты математических теорий особенностей и бифуркаций. Новое издание дополнено обзором недавних достижений теории перестроек, библиографией и задачником. Рассчитана на научных работников, преподавателей, студентов и всех, кто интересуется современной математикой.

Теория катастроф — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Теория катастроф», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Рис 78 Отождествление соседних множеств уровня функции вдали от критических - фото 81

Рис. 78. Отождествление соседних множеств уровня функции вдали от критических точек

Отсюда следует, что монодромия, т. е. отождествление линий уровня с, непрерывно зависящее от пути, пробегаемого значением с при обходе критического значения, может быть выбрана так, что вне указанной окрестности все точки линии уровня вернутся на место, когда с совершит полный оборот.

Остается разобраться, что произойдет внутри окрестности. При этом достаточно рассмотреть стандартную функцию f = х 2+ у 2. Часть комплексной линии уровня, попавшая внутрь окрестности, топологически представляет собой цилиндр, оба края которого выходят на границу окрестности. В то же время эта часть двулистно накрывает область на плоскости комплексного переменного х с ветвлением в точках ± √c, как это объяснено выше (рис. 77).

Когда с совершает полный оборот вокруг нуля, отрезок между точками ветвления совершает пол-оборота, в результате чего мы возвращаемся к прежним (хотя и переставившимся) точкам ветвления. Непрерывно отождествляя между собой возникающие по дороге поверхности (так, чтобы точки краев оставались все время близкими к своему исходному положению), мы получим в конце концов отображение цилиндра на себя (монодромию), устроенное следующим образом.

Отрезок образующей цилиндра, обозначенный на рисунке 79, 1 буквой γ, в процессе отождествления переходит в кривые, обозначенные этой же буквой на промежуточных поверхностях (2, 3, 4). В конце концов мы возвращаемся к исходному цилиндру (5), но кривая у переходит в новую кривую с теми же концами. Легко сообразить, что на поверхности цилиндра эта новая кривая делает один полный оборот вдоль направляющей окружности, как и изображено на рис. 76.

Рис 79 Построение монодромии последовательным отождествлением близких - фото 82

Рис. 79. Построение монодромии последовательным отождествлением близких римановых поверхностей

Таким образом, монодромия перекручивает цилиндрическую часть комплексной линии уровня функции, расположенную вблизи критической точки, ровно на один целый оборот. Исчезающий цикл при таком перекручивании переходит в себя (повернувшись на π). Другие же циклы на линии уровня преобразуются в, вообще говоря, новые циклы. А именно, всякий раз, когда какой-либо цикл проходил вдоль образующей нашего цилиндра (т. е. пересекал исчезающий цикл), перекручивание изменяет проходящий цикл на исчезающий, так что (с точностью до непрерывных деформаций) образ проходящего цикла при монодромии получается из проходящего цикла добавлением столько раз взятого исчезающего цикла, сколько раз проходящий цикл (с учетом знаков) пересекал исчезающий. Если это число равно нулю, то проходящий цикл называется ортогональным исчезающему. Такой цикл при монодромии не меняется.

Мы вывели, таким образом (для функций двух переменных), "формулу Пикара — Лефшеца", основную в комплексной теории критических точек функций. При переходе к функциям любого числа n переменных исчезающий цикл становится сферой размерности n — 1, а цилиндр — множеством всех его касательных векторов. Если число переменных n нечетно, то монодромия действует на классы циклов как отражение в зеркале, ортогональном исчезающему циклу (сам он при монодромии меняет знак).

Сложные критические точки функций при общих малых шевелениях распадаются на простейшие. В результате общего малого шевеления возникает несколько критических значении и около каждого из них — по исчезающему циклу. Обход каждого из критических значений определяет преобразование монодромии. Подход от некритического исходного значения к каждому критическому значению по некритическому пути переносит исчезающий цикл в многообразие исходного неособого уровня пошевеленной функции. В результате там возникает целый набор исчезающих циклов.

Например, неособая комплексная линия уровня функции х 3+ у 2— это тор без одной точки. Малое шевеление х 3— εх + у 2имеет два критических значения (рис. 80). Подход к ним от некритической комплексной линии уровня определяет на этом торе два исчезающих цикла: параллель и меридиан тора. Точно так же на поверхности уровня функции х 3+ у 2+ z 2лежат две исчезающих сферы, пересекающиеся в одной точке. Соответствующие им преобразования монодромии — отражения пространства классов циклов в ортогональных исчезающим циклам зеркалах.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Теория катастроф»

Представляем Вашему вниманию похожие книги на «Теория катастроф» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Теория катастроф»

Обсуждение, отзывы о книге «Теория катастроф» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x