Агниджо Банерджи - Эта странная математика. На краю бесконечности и за ним

Здесь есть возможность читать онлайн «Агниджо Банерджи - Эта странная математика. На краю бесконечности и за ним» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2021, ISBN: 2021, Издательство: Литагент Corpus, Жанр: Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Эта странная математика. На краю бесконечности и за ним: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Эта странная математика. На краю бесконечности и за ним»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Автор множества научно-популярных книг, астроном и музыкант Дэвид Дарлинг и необычайно одаренный молодой математик Агниджо Банерджи, в тринадцать лет набравший максимально возможное количество баллов в IQ-тесте общества интеллектуалов Менса, представляют свежий взгляд на мир математики. Вместе они бесстрашно берутся объяснить самые странные, экзотичные и удивительные проблемы математики нашего времени. Спектр обсуждаемых тем широк: от высших измерений, хаоса, бесконечности и парадоксов до невообразимо огромных чисел, музыки, сложных игр. А главное – все это оказывается неразрывно связанным с нашей повседневной жизнью. Отличная книга для всех, кто интересуется наукой, ведь математика – «основа окружающего нас физического мира, его невидимая инфраструктура».
В формате PDF A4 сохранен издательский макет.

Эта странная математика. На краю бесконечности и за ним — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Эта странная математика. На краю бесконечности и за ним», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Гравюра с портретом Пьера де Ферма Надо сказать что Ферма был математиком - фото 36

Гравюра с портретом Пьера де Ферма.

Надо сказать, что Ферма был математиком поистине великим и в просчетах замечен не был. Ни в одном из опубликованных им доказательств не обнаружилось ошибок. Опровергнута была всего одна из его гипотез, причем Ферма и не утверждал, что может ее доказать. Так что же, его загадочный комментарий на полях был шуткой? Может, он таким образом бросал вызов современным ему и будущим математикам, пытаясь подтолкнуть их к поискам доказательства? Или же доказательство у него и правда было и ему действительно просто не хватило места, чтобы его изложить? История подсказывает, что последнее маловероятно: несмотря на многочисленные попытки решить проблему, никому в последующие столетия не удалось найти умеренно лаконичного доказательства. Лишь в 1995 году, через 358 лет после того, как Ферма начертал на полях свою дразнящую воображение заметку, его гипотеза была наконец переведена в разряд доказанных теорем, а потребовавшийся для этого математический арсенал по своей сложности намного превышал все, что было доступно в XVII веке.

Заслуга доказательства теоремы принадлежит британскому математику Эндрю Уайлсу, который “заболел” гипотезой Ферма в десятилетнем возрасте, впервые прочитав о ней по дороге из школы домой в книге, взятой в местной библиотеке. Почти четверть века спустя он всерьез занялся поиском доказательства. Эта работа привела его в область математики, связанную с эллиптическими кривыми и гипотезой Таниямы – Симуры, которую в 1957 году сформулировали японские математики Ютака Танияма и Горо Симура. Уайлс объявил о том, что нашел доказательство Великой теоремы Ферма, во время лекции в 1993 году, но впоследствии в нем был обнаружен изъян, и только два года спустя, уже почти отчаявшись исправить ошибку, Уайлс наконец представил миру безупречное доказательство, решившее вопрос окончательно и бесповоротно. Хотя Великая теорема Ферма – одна из самых известных сложных математических проблем, ее решение не так уж существенно для математики. Она, например, не была включена в составленный Гильбертом список кардинальных проблем. Зато гипотеза Таниямы – Симуры устанавливает важные взаимосвязи между, казалось бы, совершенно различными областями математики.

Доказательства, подобные найденному для Великой теоремы Ферма, непросты потому, что они мудреные и требуют поистине творческих прорывов. Другие сложны в основном из-за того, что трудоемки и немыслимо затратны по времени. Так называемая теорема о четырех красках, которая гласит, что любую карту можно раскрасить всего четырьмя красками так, чтобы ни в одном месте граничащие друг с другом регионы не оказались одного цвета, была впервые сформулирована в 1852 году в письме Огастеса де Моргана, первого профессора математики недавно открытого Университетского колледжа Лондона, своему другу, ирландскому математику Уильяму Гамильтону. Ограничения задачи: каждая из областей на карте должна быть связной; все области должны лежать на плоскости; граничащими друг с другом считаются области, имеющие общий участок границы, стык в одной точке не считается. Как выяснилось, доказать это совсем не просто. Одни теоретические выкладки – уже не подарок, но основная трудность была даже не в них, а в огромном количестве вариантов, требующих проверки. И вот, после более чем ста лет работы и изучения всех возможных карт, математикам удалось свести число уникальных конфигураций к 1936. Однако для проверки даже такого количества вариантов ни одиночному исследователю, ни группе ученых не хватило бы жизни, поэтому для обработки данных задействовали компьютеры. Наконец в 1976 году теорема о четырех красках была доказана Кеннетом Аппелем и Вольфгангом Хакеном из Иллинойского университета и все перепроверено с помощью различных программ и компьютеров.

Несмотря на скрупулезную проверку Аппелем и Хакеном результатов компьютерной обработки данных, проделанная ими работа вызвала бурный протест ряда математиков и философов, утверждавших, что “машинное” доказательство либо нелегитимно, либо ненадежно, поскольку его невозможно проверить вручную. Споры о том, допустимо ли использовать компьютеры для доказательства теорем, не прекращаются и сегодня – из-за опасений получить неверный результат, если вдруг компьютер даст сбой или в программное обеспечение закрадется ошибка. И все же в силу необходимости этот подход получает со временем все большее распространение и признание. Сколько-то развеять сомнения скептиков позволят появившиеся недавно “системы автоматического доказательства теорем” – программы-верификаторы, приводящие доказательства к некоему стандартному виду и проверяющие их на ошибки.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Эта странная математика. На краю бесконечности и за ним»

Представляем Вашему вниманию похожие книги на «Эта странная математика. На краю бесконечности и за ним» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Эта странная математика. На краю бесконечности и за ним»

Обсуждение, отзывы о книге «Эта странная математика. На краю бесконечности и за ним» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x