Для разных людей “доказательство” означает разные вещи. Для юриста оно может принимать различные формы в зависимости от типа разбираемого дела и судебного органа. В юриспруденции доказывание по сути сводится к сбору свидетельских показаний и вещественных улик, причем требования к их объему и качеству, необходимые, чтобы убедить судью или жюри присяжных, разнятся при рассмотрении гражданских и уголовных дел. В гражданском процессе решение основывается на принципе большей вероятности: судья вправе признать ответчика виновным, если придет к заключению, что тот “вероятнее всего” нарушил закон или что существуют “обоснованные подозрения”. В англо-американской системе уголовного права обвиняемый считается невиновным, пока его вина не доказана; в этом случае “доказательством” признается не просто высокая вероятность виновности, но виновность “вне всяких разумных сомнений”.
Курт Гёдель.
Ученым-естественникам, как и юристам, чаще приходится иметь дело со свидетельствами, чем с доказательствами. Современные ученые вообще обходятся довольно скромными формулировками и предпочитают не употреблять термины “доказательство” и “истина” в некоем абсолютном смысле. Естественные науки – это в основном наблюдения, выстраивание теорий, наиболее логично объясняющих результаты наблюдений, и последующая проверка теорий дальнейшими наблюдениями и экспериментами. Научные теории носят предварительный характер: это лишь лучший для своего времени способ с помощью доступной информации объяснить, как функционирует окружающий нас мир. Всего одного нового подтвержденного факта, не укладывающегося в теорию, достаточно, чтобы разбить ее в пух и прах. Возьмите хоть гравитацию. Аристотель был убежден, что тяжелые предметы падают с большей скоростью, чем легкие, – ведь если одновременно сбросить с высоты камень и перышко, камень приземлится гораздо быстрее. Потребовалось немало хитроумных экспериментов и почти две тысячи лет, чтобы доказать неправоту Аристотеля. Существует популярная легенда о том, как в 1589 году Галилей окончательно опроверг устаревшие представления о земном тяготении, взобравшись на Пизанскую башню и сбросив оттуда два пушечных ядра разной массы, которые достигли земли одновременно. Скорее всего, такого эксперимента никогда не было: единственный первичный источник, где он упоминается, – это биография Галилея, написанная одним из его учеников, Винченцо Вивиани, и опубликованная спустя годы после смерти автора. Зато мы точно знаем, что Галилей экспериментировал с шарами различной массы, которые он скатывал по наклонным плоскостям, ослабив таким остроумным способом эффекты земного тяготения, что позволило ему более точно измерять скорости, с какими падают тела. Результаты экспериментов Галилея и исследований немецкого астронома Иоганна Кеплера позже были положены Исааком Ньютоном в основу новой теории тяготения. Эту теорию до сих пор преподают в школах, с ее помощью составляют программы полетов космических кораблей по Солнечной системе, и на нее можно положиться почти в любой ситуации, когда требуется оценить гравитационные эффекты. Почти. Проблема в том, что она не всегда дает точный результат. Теория всемирного тяготения Ньютона позволяет с очень хорошей точностью предсказать эффекты гравитации – настолько хорошей, что в обычной ситуации разница между прогнозом и реальностью просто незаметна. И все же это лишь приближение. В 1915 году Эйнштейн обнародовал свою общую теорию относительности – на сегодняшний день нашу лучшую теорию гравитации. Она объясняет то, чего не может объяснить теория Ньютона, например, такие явления, как смещение орбиты Меркурия или отклонение света звезд вблизи Солнца, и ситуации с экстремальным гравитационным притяжением, как вблизи черных дыр. Никто ни на минуту не считает общую теорию относительности Эйнштейна последним словом в изучении гравитации – ведь она не объясняет, как действует притяжение в мире предельно малого, где царствует квантовая механика. Должна быть какая-то теория, объединяющая законы квантового мира и гравитацию, – мы просто пока не смогли ее найти.
Суть в том, что естественно-научную теорию можно опровергнуть или по крайней мере показать, что она не точна, – но вот доказать, что она всегда, при любых обстоятельствах верна, невозможно. Будущие открытия, о которых мы сегодня ничего не знаем, могут даже от самой стройной и убедительной теории не оставить камня на камне. С математикой же все иначе.
Читать дальше
Конец ознакомительного отрывка
Купить книгу