Агниджо Банерджи - Эта странная математика. На краю бесконечности и за ним

Здесь есть возможность читать онлайн «Агниджо Банерджи - Эта странная математика. На краю бесконечности и за ним» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2021, ISBN: 2021, Издательство: Литагент Corpus, Жанр: Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Эта странная математика. На краю бесконечности и за ним: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Эта странная математика. На краю бесконечности и за ним»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Автор множества научно-популярных книг, астроном и музыкант Дэвид Дарлинг и необычайно одаренный молодой математик Агниджо Банерджи, в тринадцать лет набравший максимально возможное количество баллов в IQ-тесте общества интеллектуалов Менса, представляют свежий взгляд на мир математики. Вместе они бесстрашно берутся объяснить самые странные, экзотичные и удивительные проблемы математики нашего времени. Спектр обсуждаемых тем широк: от высших измерений, хаоса, бесконечности и парадоксов до невообразимо огромных чисел, музыки, сложных игр. А главное – все это оказывается неразрывно связанным с нашей повседневной жизнью. Отличная книга для всех, кто интересуется наукой, ведь математика – «основа окружающего нас физического мира, его невидимая инфраструктура».
В формате PDF A4 сохранен издательский макет.

Эта странная математика. На краю бесконечности и за ним — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Эта странная математика. На краю бесконечности и за ним», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Больше тысячи лет геометрия в том виде, как она изложена в “Началах” (она получила название евклидовой), не вызывала ни у кого вопросов. Но потом у некоторых математиков зародились сомнения в истинности одного из постулатов, на которых зиждется великий труд древнегреческого ученого. Первые четыре постулата Евклида просты, понятны и бесспорны, но пятый, так называемая аксиома параллельности, более сложен и не столь очевиден. У Евклида он сформулирован так: “И если прямая, падающая на две прямые, образует внутренние и по одну сторону углы, [в сумме] меньшие двух прямых, то продолженные эти две прямые неограниченно встретятся с той стороны, где углы меньшие двух прямых” [57] И все же Евклид не был абсолютно строг: гораздо позже были обнаружены некоторые утверждения, например так называемая теорема Паша, которые неявно использовались Евклидом в “Началах”, однако не являются следствиями его аксиом. – Прим. науч. ред . . Позже математики нашли способ выразить ту же мысль менее витиевато. Например, шотландец Джон Плейфер предложил такую альтернативную формулировку аксиомы параллельности: “Если дана прямая на плоскости и точка вне этой прямой, максимум одна прямая, параллельная данной прямой, может быть проведена через точку”. Существует и ряд других утверждений, по сути эквивалентных постулату о параллельных прямых; наиболее понятное из них, наверное, то, в котором говорится, что сумма углов треугольника равна 180 градусам. Но независимо от формулировки пятый постулат кажется менее очевидным и более запутанным, чем остальные четыре, а потому многие математики в последующие столетия подозревали, что возможно построить его доказательство с помощью первых четырех. Спустя более тысячи лет после Евклида некоторые арабские математики начали сомневаться в справедливости самого постулата: в их трудах содержатся первые намеки на то, что есть нечто и за пределами геометрии “Начал”.

В первой половине XIX века три математика – венгр Янош Бойяи, русский Николай Лобачевский и немец Карл Гаусс – осознали, что если изъять постулат о параллельных прямых, то получится не ущербная евклидова, а совершенно новая геометрия. Она получила название гиперболической, от греческого слова, означающего “слишком много” (в ней слишком много пространства для евклидовой плоскости). Гиперболическая геометрия характеризуется постоянной отрицательной кривизной (это означает, что гиперболическое пространство одинаково искривлено противоположным по сравнению со сферой образом). В гиперболической геометрии сумма углов треугольника меньше 180 градусов, а теорема Пифагора не выполняется. Это не значит, что евклидова геометрия неверна, а данное Евклидом доказательство теоремы Пифагора ошибочно. При условиях, изложенных в аксиомах Евклида, теорема Пифагора выполняется всегда. Но вот если эти аксиомы меняются, то возникают иные геометрические системы, в которых выполняются другие теоремы. Замена пятого постулата на его отрицание приводит к рождению абсолютно новой геометрии – гиперболической. То же самое происходит в любой математической системе: изменение базовых аксиом открывает новый математический мир, где действуют иные правила. Теорему Пифагора можно доказать, пользуясь набором аксиом – теми самыми пятью постулатами, – что сформулировал Евклид. Но уберите пятый постулат – и вы получите неевклидову геометрию, в которой теорема Пифагора неверна. Математики открыли и еще одну геометрическую систему, где также отрицается пятый постулат, но, кроме того, видоизменяется второй: прямые линии в ней не могут продолжаться бесконечно, поскольку находятся на поверхности сферы. Эта вторая неевклидова геометрия, получившая название эллиптической, была разработана немцем Бернхардом Риманом.

Евклид показал миру, как правильно и точно доказывать математические утверждения. Он также продемонстрировал, что с помощью одного набора аксиом, сформулированных в конкретном разделе математики, возможно охватить всю эту науку. После “Начал” он написал другие труды, в которых применил свои пять постулатов для доказательства других, не относящихся к геометрии теорем. Например, переработав свои постулаты так, чтобы они оказались применимы к теории чисел, он сумел доказать, что существует бесконечно много простых чисел (тех, что делятся только сами на себя и на единицу). Современные математики используют тот же подход – берут аксиомы из одного раздела своей науки и применяют их в разных областях; правда, обращаются они не к геометрии, а к другому, более абстрактному разделу математики, известному как теория множеств.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Эта странная математика. На краю бесконечности и за ним»

Представляем Вашему вниманию похожие книги на «Эта странная математика. На краю бесконечности и за ним» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Эта странная математика. На краю бесконечности и за ним»

Обсуждение, отзывы о книге «Эта странная математика. На краю бесконечности и за ним» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x