Агниджо Банерджи - Эта странная математика. На краю бесконечности и за ним

Здесь есть возможность читать онлайн «Агниджо Банерджи - Эта странная математика. На краю бесконечности и за ним» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2021, ISBN: 2021, Издательство: Литагент Corpus, Жанр: Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Эта странная математика. На краю бесконечности и за ним: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Эта странная математика. На краю бесконечности и за ним»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Автор множества научно-популярных книг, астроном и музыкант Дэвид Дарлинг и необычайно одаренный молодой математик Агниджо Банерджи, в тринадцать лет набравший максимально возможное количество баллов в IQ-тесте общества интеллектуалов Менса, представляют свежий взгляд на мир математики. Вместе они бесстрашно берутся объяснить самые странные, экзотичные и удивительные проблемы математики нашего времени. Спектр обсуждаемых тем широк: от высших измерений, хаоса, бесконечности и парадоксов до невообразимо огромных чисел, музыки, сложных игр. А главное – все это оказывается неразрывно связанным с нашей повседневной жизнью. Отличная книга для всех, кто интересуется наукой, ведь математика – «основа окружающего нас физического мира, его невидимая инфраструктура».
В формате PDF A4 сохранен издательский макет.

Эта странная математика. На краю бесконечности и за ним — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Эта странная математика. На краю бесконечности и за ним», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Узлами с точки зрения математики первым заинтересовался Карл Гаусс в 1830-х годах. Он придумал способ вычислить коэффициент зацепления – число, показывающее, сколько раз две замкнутые кривые в трехмерном пространстве обвивают друг друга. Зацепления, как и узлы, занимают в топологии центральное место. Математические узлы и зацепления встречаются и в природе, например, в электромагнетизме и квантовой механике, а также в биохимии.

Точно так же как есть тривиальный узел, существует и тривиальное зацепление: две отдельных, никак не соединенных друг с другом окружности. Узлы – это тоже зацепления, но простые, состоящие из одной окружности; а можно создать и более сложные, если взять не одну окружность, а больше. Зацепление Хопфа, состоящее из двух однократно зацепленных окружностей, названо в честь немецкого тополога Хайнца Хопфа, хотя Гаусс изучал его на целое столетие раньше, а в изобразительном искусстве и символике оно встречалось и задолго до того. Основанная в XVI веке японская буддийская секта Бузан-ха использовала его в своем гербе. Любопытнее кольца Борромео, состоящие из трех окружностей. Необычно (и на первый взгляд кажется невозможным) в них то, что, хотя ни одно из колец не сцеплено ни с одним другим, все вместе они сцеплены: если удалить любое из трех, оставшиеся два легко разъединяются. Название колец происходит от фамилии знатной итальянской семьи Борромео, использовавшей их в своем гербе, однако сам символ уходит корнями в глубокую древность. На артефактах викингов он имеет вид трех сцепленных треугольников, известных как валькнут (что означает “узел павших”) или треугольник Одина. Тот же узор встречается и в различных религиозных контекстах, в том числе в убранстве старинных христианских храмов, где он символизирует Святую Троицу.

Узлы и зацепления нашли даже в само́й химии жизни. Белки хорошо известны своей способностью сворачиваться в определенные формы, которые определяют то, как они функционируют в биологических системах. Совершенно неожиданно для себя в середине 1990-х годов биологи открыли, что белки могут образовывать узлы и даже сцепленные кольца. Нам, чтобы завязать любой, пусть даже самый простой, узел, нужно целенаправленно продевать свободный конец веревки в петлю. Непонятно было, каким образом белки способны не только спонтанно осуществлять самосборку, но еще и умудряться завязываться при этом в узлы. Собственно, при построении большинства математических моделей, предсказывающих результат сворачивания белков на основании затрачиваемой энергии, образование любых структур, имеющих форму узлов, заведомо исключалось – настолько невозможным это казалось. Ученым еще только предстоит разобраться, как в белках образуются узлы – и зачем.

В начале 2017 года группа химиков из Манчестерского университета объявила о создании самого тугого узла за всю историю. Состоящий из 192 соединенных в цепочку атомов, он имеет в ширину всего 20 миллионных миллиметра – примерно в 2 000 раз тоньше человеческого волоса. Молекулярная нить, содержащая атомы углерода, азота и кислорода, перекрещивается восемь раз и скручивается в тройную спираль. Расстояние между точками перекрещивания нити – именно оно определяет, насколько узел тугой, – составило всего 24 атома.

Есть в научном мире и другие необычные топологические структуры. Одна из самых удивительных – уже упомянутая лента Мёбиуса. В 2012 году химики из Университета Глазго сообщили, что им удалось превратить симметричную кольцеобразную молекулу в асимметричную, добавив в кольцо молибден-кислородное звено с формулой Mo 4O 8. Добавленное звено перекрутило кольцо на пол-оборота, превратив его в ленту Мёбиуса.

Сделать самостоятельно ленту Мёбиуса под силу даже ребенку. Посложнее обстоят дела с другой односторонней поверхностью – бутылкой Клейна, названной в честь немецкого математика Феликса Клейна, впервые ее описавшего. Предполагают, что сначала она именовалась Kleinsche Fläche , что означает “поверхность Клейна”, но впоследствии название исказили и она превратилась в Kleinsche Flasche – “бутылку Клейна”. Так или иначе, это название прижилось, а возможно, даже способствовало популярности объекта, несмотря на то что слово “поверхность” точнее описывает его суть.

В отличие от ленты Мёбиуса, у бутылки Клейна нет краев или границ, что роднит ее со сферой. Но в отличие от сферы, у бутылки Клейна нет внутренней и внешней стороны – они идентичны, – поскольку она представляет собой единую поверхность, переходящую саму в себя. В реальном мире мы с подобным обычно не сталкиваемся. Нам привычнее объекты вроде банок с бочонками или бутылок с божоле, имеющие четко определенные внутреннюю и внешнюю стороны, а значит, заключающие в себе определенный объем. Но поскольку бутылка Клейна не разделяет пространство на две различных области, то она ничего в себе и не заключает, а стало быть, ограничивает нулевой объем.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Эта странная математика. На краю бесконечности и за ним»

Представляем Вашему вниманию похожие книги на «Эта странная математика. На краю бесконечности и за ним» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Эта странная математика. На краю бесконечности и за ним»

Обсуждение, отзывы о книге «Эта странная математика. На краю бесконечности и за ним» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x