Агниджо Банерджи - Эта странная математика. На краю бесконечности и за ним

Здесь есть возможность читать онлайн «Агниджо Банерджи - Эта странная математика. На краю бесконечности и за ним» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2021, ISBN: 2021, Издательство: Литагент Corpus, Жанр: Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Эта странная математика. На краю бесконечности и за ним: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Эта странная математика. На краю бесконечности и за ним»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Автор множества научно-популярных книг, астроном и музыкант Дэвид Дарлинг и необычайно одаренный молодой математик Агниджо Банерджи, в тринадцать лет набравший максимально возможное количество баллов в IQ-тесте общества интеллектуалов Менса, представляют свежий взгляд на мир математики. Вместе они бесстрашно берутся объяснить самые странные, экзотичные и удивительные проблемы математики нашего времени. Спектр обсуждаемых тем широк: от высших измерений, хаоса, бесконечности и парадоксов до невообразимо огромных чисел, музыки, сложных игр. А главное – все это оказывается неразрывно связанным с нашей повседневной жизнью. Отличная книга для всех, кто интересуется наукой, ведь математика – «основа окружающего нас физического мира, его невидимая инфраструктура».
В формате PDF A4 сохранен издательский макет.

Эта странная математика. На краю бесконечности и за ним — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Эта странная математика. На краю бесконечности и за ним», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Того же эффекта, когда в определенный момент регулярность и предсказуемость уступают место хаосу, можно добиться и с помощью уравнений более простых, чем те, что используются при моделировании погоды. Возьмем некое значение x , которое может быть любым числом от 0 до 1 включительно. Затем умножим x на (1 – x ) и на постоянную k , которая может быть любым числом от 1 до 4 включительно. Полученное значение x снова подставим в эту же формулу, и так снова и снова. На математическом языке можно записать то, что мы делаем, в виде xkx (1 – x ) для 0 ≤ x ≤ 1 и 1 ≤ k ≤ 4. Выполняя эти действия, мы обнаружим, что для значений k , меньших или равных 3, существует аттрактор, состоящий из одной точки, к которому стремятся все значения x (кроме 0 и 1). Для значений k от 3 до 3,45 аттрактор состоит из двух чередующихся точек. При значении k в диапазоне от 3,45 до 3,54 аттрактор состоит из четырех точек, потом их становится восемь и так далее, причем количество точек удваивается все чаще и чаще. При значении k , равном приблизительно 3,57, происходит существенное изменение, после которого удвоение уже не учащается, а происходит бесконечное количество раз. На этом этапе система уже не может стабилизироваться и становится абсолютно хаотичной. Хаос возникает в момент, когда предсказуемая система становится полностью непредсказуемой. Например, в нашем случае при значении k, меньшем 3, легко предсказать, что после, скажем, ста итераций точка окажется очень близко к единственному аттрактору. При значениях k , превышающих 3,57, уже невозможно предсказать, как поведет себя в отдаленном будущем та или иная точка.

Процессом удвоения точек аттрактора (от одной к двум, от двух к четырем и так далее), который мы наблюдали, когда значение k в нашем примере превысило 3, управляет важная математическая постоянная, называемая константой Фейгенбаума. Увидеть, как эта важная константа возникает, можно на этапах, предшествующих хаосу. Первая фаза, с циклом в одну точку, имеет длину 2, поскольку длится от k = 1 до k = 3. Вторая фаза, с циклом в две точки, имеет длину приблизительно 0,45, так как длится от k = 3 до k = 3,45. Отношение 2:0,45 равно примерно 4,45. Третья фаза имеет длительность около 0,095. Отношение 0,45: 0,095 приблизительно равно 4,74. И так далее. Эти отношения стремятся к константе Фейгенбаума, которая приблизительно равна 4,669. Длительность фаз сокращается экспоненциально, так что к моменту, когда k достигает 3,57, цикл повторяется бесконечное количество раз.

Константа Фейгенбаума выявляется в результате процесса, который мы только что рассмотрели, но ее фундаментальность для теории хаоса в том, что она обнаруживается во всех аналогичных хаотических системах. Какое уравнение ни возьми (если только оно отвечает определенным базовым условиям), оно будет иметь циклы, длина которых изменяется вдвое в соответствии с константой Фейгенбаума.

Чтобы увидеть, как хаотические процессы приводят к образованию фракталов, можно взять тот же итеративный процесс и нанести на сетку координат аттракторы для каждого значения k . Бо́льшая часть из того, что появляется после k = 3,57, – чистый хаос, но есть несколько значений k , для которых существует конечный аттрактор. Их называют “островами стабильности”. Один из таких островов образуется при значении k , близком к 3,82. В этом месте мы обнаруживаем аттрактор, состоящий всего из трех значений. Приблизив на графике любое из этих значений, мы видим рисунок, очень похожий на весь график в целом, хоть и не повторяющий его в точности.

В ходе своих новаторских исследований хаоса Лоренц также обнаружил новый вид фрактала, так называемый странный аттрактор. Обычный аттрактор прост в том смысле, что точки стремятся к нему, а затем совершают определенные постоянные циклы в его окрестностях. Странные же аттракторы, как мы увидим, ведут себя иначе. Для того чтобы получить первый пример странного аттрактора, Лоренц использовал систему дифференциальных уравнений. При увеличении масштаба в любой его точке появлялось бесконечное множество параллельных линий. Любая точка на аттракторе передвигалась по хаотической траектории рядом с ним, никогда не возвращаясь точно в исходное положение, а две точки, находившиеся изначально очень близко друг к другу, быстро расходились и в итоге оказывались на совершенно разных траекториях. Чтобы провести аналогию с физическим миром, представьте себе шарик для настольного тенниса и океан. Если шарик сбросить с высоты над океаном, он будет быстро падать, пока не коснется воды. Если его погрузить под воду и отпустить там, он быстро всплывет. Но как только он оказывается на поверхности океана, его движение становится совершенно непредсказуемым и хаотичным. Точно так же точка, не находящаяся на странном аттракторе, будет стремительно двигаться по направлению к нему. Достигнув же странного аттрактора, она начинает двигаться вблизи него хаотично.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Эта странная математика. На краю бесконечности и за ним»

Представляем Вашему вниманию похожие книги на «Эта странная математика. На краю бесконечности и за ним» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Эта странная математика. На краю бесконечности и за ним»

Обсуждение, отзывы о книге «Эта странная математика. На краю бесконечности и за ним» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x