Агниджо Банерджи - Эта странная математика. На краю бесконечности и за ним

Здесь есть возможность читать онлайн «Агниджо Банерджи - Эта странная математика. На краю бесконечности и за ним» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2021, ISBN: 2021, Издательство: Литагент Corpus, Жанр: Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Эта странная математика. На краю бесконечности и за ним: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Эта странная математика. На краю бесконечности и за ним»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Автор множества научно-популярных книг, астроном и музыкант Дэвид Дарлинг и необычайно одаренный молодой математик Агниджо Банерджи, в тринадцать лет набравший максимально возможное количество баллов в IQ-тесте общества интеллектуалов Менса, представляют свежий взгляд на мир математики. Вместе они бесстрашно берутся объяснить самые странные, экзотичные и удивительные проблемы математики нашего времени. Спектр обсуждаемых тем широк: от высших измерений, хаоса, бесконечности и парадоксов до невообразимо огромных чисел, музыки, сложных игр. А главное – все это оказывается неразрывно связанным с нашей повседневной жизнью. Отличная книга для всех, кто интересуется наукой, ведь математика – «основа окружающего нас физического мира, его невидимая инфраструктура».
В формате PDF A4 сохранен издательский макет.

Эта странная математика. На краю бесконечности и за ним — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Эта странная математика. На краю бесконечности и за ним», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Фракталы, такие как снежинка Коха и салфетка Серпинского, самоподобны, то есть состоят из последовательно уменьшающихся копий самих себя. Большинство природных фракталов не являются самоподобными в строгом смысле слова. Но статистически они обладают самоподобием, поэтому их фрактальную размерность все равно можно вычислить описанным выше методом. Например, измеренная таким образом фрактальная размерность береговой линии Великобритании составляет 1,25, что очень близко к размерности снежинки Коха. Проще говоря, это означает, что британское побережье при рассмотрении в каком угодно масштабе в 1,25 раза более извилисто, или “неровно”, чем прямая линия или любая другая простая кривая. Береговая линия Южной Африки представляет собой куда более гладкую кривую – ее фрактальная размерность всего 1,05. Побережье Норвегии с ее многочисленными глубокими фьордами затейливой формы имеет размерность 1,52. То же и со многими другими природными фракталами. Яркий пример – человеческое легкое. Поскольку само легкое очевидно трехмерно, его поверхность, по идее, должна быть двумерной. Однако в процессе эволюции легкое обрело огромную площадь поверхности – около 80–100 квадратных метров, в половину теннисного корта, – чтобы максимально ускорить газообмен. Поверхность легкого имеет настолько причудливую форму, со всеми его бесчисленными разветвлениями и крохотными воздушными пузырьками – альвеолами, – что она почти заполняет содержащееся внутри него пространство. Поверхность легкого имеет фрактальную размерность, если измерять ее клеточным методом, примерно 2,97 – она почти трехмерна.

В реальном мире существует только три пространственных измерения, но иногда “четвертым измерением” считают время. Неудивительно поэтому, что фракталы могут существовать не только в пространстве, но и во времени. Пример из экономики – рынок ценных бумаг. Цены на рынке периодически существенно повышаются и понижаются. Некоторые из этих колебаний занимают годы, другие (например, биржевые крахи) могут происходить крайне быстро. Кроме них есть и более умеренные колебания, когда цены поднимаются и снижаются вроде бы независимо от более долговременных трендов, и совсем уж скромные подъемы и падения, происходящие по много раз в день. Поскольку любое колебание на фондовом рынке фиксируется компьютерами, все эти тренды можно отследить вплоть до самых коротких промежутков времени – поминутно и даже посекундно.

Еще один пример временно́го фрактала нам уже встречался – это все то же побережье Великобритании. В любой отдельно взятый момент береговая линия представляет собой чисто пространственный фрактал, длина которого зависит от масштаба увеличения. Но со временем его форма и сложность непрерывно меняются из-за процессов эрозии и отложения осадков, приливов и отливов и даже под действием отдельных волн, а также едва уловимых колебаний земной коры, вызванных тектонической активностью.

Из всех известных математикам фракталов один стоит особняком из-за своей невероятной замысловатости. Эта удивительная фигура не только имеет сложную структуру в любом масштабе, но и при разном увеличении в различных точках может выглядеть как два абсолютно непохожих фрактала! Речь идет о знаменитом множестве Мандельброта, которое американский писатель Джеймс Глик в своей книге “Хаос” назвал (возможно, не совсем справедливо) “наиболее сложным объектом во всей математике” [16] Глик Дж. Хаос. Создание новой науки. М.: Corpus, 2020. . Хотя фрактал и носит имя Бенуа Мандельброта, вопрос о том, кто на самом деле его открыл, остается спорным. Два математика утверждали, что независимо открыли его примерно в то же время. Еще один, Джон Хаббард, профессор Корнеллского университета, вспоминал, что во время поездки в IBM в самом начале 1979 года он показал Мандельброту, как запрограммировать компьютер для построения частичных изображений объекта, который в следующем году, после публикации Мандельбротом научной статьи, стал носить его имя. Хотя Мандельброт внес серьезный вклад в популяризацию фракталов и придумал хитроумные способы их визуального отображения, он, похоже, не слишком любил отдавать должное заслугам других математиков.

Фрагмент множества Мандельброта Несмотря на свою фантастическую сложность - фото 12

Фрагмент множества Мандельброта.

Несмотря на свою фантастическую сложность, множество Мандельброта описывается очень простым правилом, которое применяется снова и снова до бесконечности. Суть правила такова: нужно взять число, возвести его в квадрат, а затем прибавить к некоему фиксированному числу. Результат надо подставить в ту же формулу и процесс повторять снова и снова, итерацию за итерацией. Числа эти компле́ксные, то есть каждое из них состоит из двух частей, одна из которых представляет собой действительное число, а вторая – так называемое “мнимое” (число, помноженное на квадратный корень из –1). Изображение фрактала получается, когда действительная и мнимая части каждого числа выводятся в виде графика.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Эта странная математика. На краю бесконечности и за ним»

Представляем Вашему вниманию похожие книги на «Эта странная математика. На краю бесконечности и за ним» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Эта странная математика. На краю бесконечности и за ним»

Обсуждение, отзывы о книге «Эта странная математика. На краю бесконечности и за ним» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x