В политике спойлером называют кандидата или партию на выборах, который не имеет шансов победить, но оттягивает на себя часть голосов за другого кандидата со сходной программой, повышая тем самым шансы на победу кандидата или партии с противоположной позицией по главным вопросам. Прим. ред.
Обратите внимание, что в случае применения метода одобрительного голосования такой проблемы нет.
“Ross Reruns,” Newsweek, Special Election Recap Issue, November 18, 1996, p. 104.
Во многих книгах, посвященных теме голосования, отмечается тот факт, что участники голосования, которым необходимо сделать выбор из пары альтернатив, в последнем туре всегда голосуют в соответствии со своими истинными предпочтениями.
Более подробный анализ этого примера можно найти здесь: Riker, Liberalism Against Populism, pp. 152–57.
Этот результат можно найти в книге: P. Ordeshook and T. Palfrey, “Agendas, Strategic Voting, and Signaling with Incomplete Information,” American Journal of Political Science, vol. 32, no. 2 (May 1988), pp. 441–66. Представленный ниже пример основан на результатах анализа, выполненного Ордешуком и Палфри.
Тип «центрист» может повлиять на результат голосования, только если остальные голоса распределены между вариантами П и С поровну. Следовательно, должно быть ровно ( n — 1)/2 участников голосования правого типа, выбравших вариант С в первом туре, и ( n — 1)/2 остальных голосующих, выбравших вариант П. Если проголосовавшие за вариант П относятся к «левому» типу, тогда вариант П не победит во втором туре голосования, а «центрист» получит выигрыш 0. Для того чтобы выигрыш «центриста» составил 1, необходимо, чтобы все участники голосования, выбравшие вариант П, относились к типу «центрист». Вероятность наступления этого события составляет [ p ц/( p л + p ц)] ( n –1)/2; тогда ожидаемый выигрыш «центриста» от голосования в соответствии со своими предпочтениями будет таким, как указано выше. См. Ordeshook and Palfrey, p. 455.
Более подробную теоретическую информацию об этой теореме можно найти здесь: A. Gibbard, “Manipulation of Voting Schemes: A General Result,” Econometrica, vol. 41, no. 4 (July 1973), pp. 587–601, and M. A. Satterthwaite, “Strategy-Proofness and Arrow’s Conditions,” Journal of Economic Theory, vol. 10 (1975), pp. 187–217. Теорема носит имена обоих ученых, поскольку они доказали ее независимо друг от друга.
Информацию о классификации Ханну Нурми можно найти здесь: H. Nurmi, Comparing Voting Systems (Norwell, Mass.: D. Reidel, 1987).
Любое сходство между нашими гипотетическими кандидатами и реальными прошлыми или будущими кандидатами в Соединенных Штатах не означает реальный анализ или прогноз их показателей в контексте равновесия Нэша. Распределение избирателей в нашем примере также не отображает реальных предпочтений американских избирателей.
В целях упрощения анализа мы не принимаем во внимание те сложности, которые создает коллегия выборщиков, и исходим из предположения, что значение имеют только голоса, поданные избирателями на президентских выборах.
Экономисты изучают этот вывод в контексте модели пространственного расположения Хотеллинга. См. Harold Hotelling, “Stability in Competition,” Economic Journal, vol. 39, no. 1 (March 1929), pp. 41–57.
Однако распределение идеальных позиций избирателей на шкале политического спектра необязательно имеет только один максимум; например, на гистограмме на рис. 15.7присутствует два максимума — в точках Л и КП.
Это та же схема, которую мы использовали в главе 11и главе 12для анализа больших совокупностей отдельных членов.
Строго говоря, здесь изображены не функции распределения, а функции плотности распределений. Прим. ред.
Мы не будем углубляться в техническую сторону теории распределения или интегрального исчисления, необходимого для вычисления точной доли избирателей, находящихся слева или справа от определенной позиции на непрерывной шкале политического спектра. Здесь мы приводим только ту информацию, которая убедит вас в том, что теорема о медианном избирателе справедлива и для непрерывного распределения.
Такая позиция, смещенная влево от x на бесконечно малую величину, возможна в случае непрерывного распределения. В нашем примере с дискретным распределением кандидаты вынуждены выбирать в точности ту же позицию.
John Allen Paulos, A Mathematician Reads the Newspaper (New York: Basic Books, 1995), pp. 104–106.
Читать дальше
Конец ознакомительного отрывка
Купить книгу