Чарльз Мостеллер - Пятьдесят занимательных вероятностных задач с решениями

Здесь есть возможность читать онлайн «Чарльз Мостеллер - Пятьдесят занимательных вероятностных задач с решениями» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Пятьдесят занимательных вероятностных задач с решениями: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Пятьдесят занимательных вероятностных задач с решениями»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга в действительности содержит 57 занимательных задач (семь задач скорее обсуждаются, чем решаются). Большинство задач несложно. Лишь совсем немногие из них требуют знания курса анализа, но и в этих случаях неподготовленный читатель все равно сможет понять постановку задачи и ответ.
Книга обращена к широкому кругу читателей: ученикам старших классов, педагогам, студентам.

Пятьдесят занимательных вероятностных задач с решениями — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Пятьдесят занимательных вероятностных задач с решениями», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
lg(365!) = 778.399975, lg(365) = 2.56229286
r = 20, lg(345!) = 727.38410,
r = 21, lg(344!) = 724.84628,
r = 22, lg(343!) = 722.30972,
r = 23, lg(342!) = 719.77442,
r = 24, lg(341!) = 717,24040,
r = 25, lg(340!) = 714.70764.

Небольшая работа с таблицами показывает, что при r = 23 вероятность по крайней мере одного совпадения дня рождений равна 0.5073, а при r = 22 эта вероятность равна 0.4757. Таким образом, r = 23 — наименьшее целое число, при котором имеет смысл заключать равноправное пари. Для большинства кажется удивительным, что это число довольно мало́, так как интуитивно ожидаемым ответом кажется 365/2. Мы обсудим это явление в следующей задаче, а пока заметим вот что:

Во-первых, следующая таблица дает значения вероятности парных дней рождения для различных значений R :

R 5 10 20 23 30 40 60
P R 0.027 0.117 0.411 0.507 0.706 0.891 0.994

Во-вторых, вспомним, что

Если x достаточно мало то члены порядка большего чем x дают в сумму - фото 99

Если x достаточно мало́, то члены порядка, большего, чем x , дают в сумму пренебрежимо малый вклад, и e −x приближенно равно 1 − x , или 1 − x можно при малых x заменить на e −x . Заметим, что

является произведением множителей вида N k N где k много меньше N - фото 100

является произведением множителей вида ( Nk )/ N , где k много меньше N . Эти множители могут быть записаны в виде 1 − k / N , где 0 ≤ kr . Поэтому

Для исследования этой асимптотической формулы положим r 23 и получим чтото - фото 101

Для исследования этой асимптотической формулы положим r = 23 и получим что-то около 0.500 вместо 0.507, или, положив r ·( r − 1)/2·365 равным −lg(0.5) ≈ 0.693, найдем отсюда r .

В-третьих, предположим, что задача модифицирована таким образом: найти вероятность того, что хотя бы два дня рождения совпадают или приходятся на два дня, следующих один за другим (1 января следует за 31 декабря). Решение такой задачи предоставляется читателю.

32. Решение задачи «В поисках парных дней рождения»

Автор считает, что большинство людей имеет в виду именно эту задачу, когда им предлагают задачу 31 о парных днях рождения. Мысль о дне рождения, совпадающем с вашим, и вызывает удивление при ответе r = 23 в задаче о парных днях рождения. В настоящих условиях вам совсем не важно, совпадают ли дни рождения других людей, если только они не совпадают с вашим. Чаще всего считают, что ответ в этой задаче равен половине от 365 или 183. Из-за смешения двух проблем ответ r = 23 кажется тогда неправдоподобно маленьким.

Но и в настоящей задаче интуитивный ответ 183 оказывается неправильным. Дело в том, что выборка дней рождения производится с возвращением. Если первый из опрошенных родился 4-го июля, то ничто не мешает и последующим иметь тот же день рождения. Вероятность того, что опрошенный человек родился не в один день с вами, равна ( N − 1)/ N , где N = 365 — число дней в году. При опросе n людей вероятность того, что все они произошли на свет не в ваш день рождения, равна [( N − 1)/ N ] n , и вероятность того, что хотя бы у одного день рождения тот же самый, что и ваш, равна

Пятьдесят занимательных вероятностных задач с решениями - изображение 102 (4)

Нас интересует наименьшее значение n , для которого P n не меньше 1/2. Логарифм 364 равен 2.56110, а 1/2 равен −0.30103.

Если мы перейдем к логарифмам, то обнаружим, что искомое значение n равно 253, что довольно значительно отличается от 183.

Можно поступить и иначе, использовав опять аппроксимацию

Пятьдесят занимательных вероятностных задач с решениями - изображение 103

Тогда

Пятьдесят занимательных вероятностных задач с решениями - изображение 104

и

Пятьдесят занимательных вероятностных задач с решениями - изображение 105

Логарифмируя, получаем n / N ≈ 0.693, n ≈ 0.693N. Для N = 365 получаем n = 253.

Эта задача легче предыдущей, и обсуждение связи между их ответами представляется поучительным.

33. Решение задачи о соотношении между разными задачами о парных днях рождения

По существу, вопрос состоит в определении числа возможных случаев в задаче о парных днях рождения. В задаче об индивидуальном дне рождения для n людей имеется n возможностей встретить человека, день рождения которого такой же, как у вас. В задаче о парных днях рождения каждый человек сравнивает свой день рождения с r − 1 днями рождения остальных людей. Число пар равно, таким образом, r ·( r − 1)/2, что и является числом возможных случаев. Для того чтобы вероятности в двух задачах приблизительно равнялись, должно выполняться соотношение

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Пятьдесят занимательных вероятностных задач с решениями»

Представляем Вашему вниманию похожие книги на «Пятьдесят занимательных вероятностных задач с решениями» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Пятьдесят занимательных вероятностных задач с решениями»

Обсуждение, отзывы о книге «Пятьдесят занимательных вероятностных задач с решениями» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x