Приведем еще один взгляд на задачу. Рассмотрим игрока с начальным капиталом x = 1, играющего неограниченно долго против казино с бесконечным капиталом в «безобидную игру» ( p = 1/2), при которой он выигрывает или проигрывает единицу в каждом туре. Он наверное обанкротится ( P ₁ = 1). Чтобы он не стал банкротом с вероятностью 1/2, вероятность его выигрыша в каждой отдельной партии должна быть p = 2/3. То, что банкротство неизбежно при p = 1/2, является неожиданным для большинства из нас. Обычно считают, что если отдельные партии «безобидны» (средняя потеря равна нулю), то и вся игра безобидна. Разумеется, это представление в обычном смысле верно. Если мы представим такую игру с p = 1/2 и большим числом партий, то среднее значение денежной суммы на руках после n туров равно 1 для каждого конечного числа n . Таким образом, отсутствие «безобидности» является одним из парадоксов бесконечного.
Другой удивительный факт состоит в том, что при p = 1/2 среднее число шагов, требуемое для поглощения, бесконечно. Случай p = 1/2 является странным и глубоким.
Вас может заинтересовать применение указанного здесь метода к частице, выходящей из точки x = m , а не из точки x = 1. Обобщение приведенного выше результата, показывает, что вероятность поглощения с абсциссы x = m есть [(1 − p )/ p ] m или 1, в зависимости от того, будет ли p больше или меньше 1/2. Если p > 1/2 и m велико, то весьма вероятно, что частица избежит поглощения, и поэтому вероятность поглощения мала, а не равна 1.
Если частица выходит из начала координат 0 и ей разрешается делать шаги в обоих направлениях с вероятностью p = 1/2, то в другой классической задаче о блуждании ставится вопрос о том, вернется ли частица когда-либо в начало координат. Мы уже видели, что так действительно будет, ибо она заведомо вернется из положений x = 1 и x = −1. Дальнейшие сведения об этой задаче будут сообщены ниже.
36. Решение задачи о разорении игрока
Наша задача — специальный случай общей задачи о случайном блуждании с двумя поглощающими барьерами. Исторически эта проблема была поставлена как игровая, называемая задачей о разорении игрока, и многие знаменитые математики занимались вопросами, связанными с ней. Сформулируем задачу в общем виде.
Игрок M имеет m денежных единиц, игрок N — n единиц. После каждой игры один игрок выигрывает, другой проигрывает единицу. В каждой партии вероятность выигрыша игрока M равна p , а выигрыша N равна q = 1 − p . Игра продолжается до разорения одного из игроков. На рис. 36.1 указана сумма денег, которую игрок M имеет в настоящий момент. Он начинает с положения x = m . Когда x = 0, он разорен, при x = m + n банкротом является игрок N .
Рис. 36.1. Схематическое изображение задачи о разорении игрока
При такой постановке, поскольку p > 1/2, мы можем использовать результат задачи 35. Мы уже знаем, что если игрок M играет против банка с неограниченными ресурсами, то становится банкротом с вероятностью ( q / p ) m. По пути к банкротству он либо получает сумму m + n ( n теперь конечно) либо никогда не будет иметь ее на руках. Пусть вероятность того, что он проиграет игроку N , равна Q (это событие равносильно выигрышу N у банка с неограниченным капиталом без достижения игроком M суммы m + n ). Тогда
( p / q ) m = Q + (1 − Q )·( q / p ) m + n , (1)
поскольку Q есть доля последовательностей, для которых поглощение произойдет до достижения точки m + n , а 1 − Q — доля тех последовательностей, которые достигают положения m + n ; ( q / p ) m + n есть доля последовательностей, поглощаемых в нуле, если игра продолжается неограниченно долго. Тогда P = 1 − Q есть вероятность того, что игрок M выиграет. Из (1) находим
P = [1 − ( q / p ) m] / [1 − ( q / p ) m+n]. (2)
В нашем случае p = 2/3, q = 1/3, m = 1, n = 2 и P = 4/7, и, значит, лучше быть вдвое более искусным в игре, чем вдвое более богатым.
Если q = p = 1/2, то P в уравнении (2) принимает неопределенную форму 0/0. Применение правила Лопиталя дает
P = m / ( m + n ). (3)
Читать дальше