Е. Миркес - Учебное пособие по курсу «Нейроинформатика»

Здесь есть возможность читать онлайн «Е. Миркес - Учебное пособие по курсу «Нейроинформатика»» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Красноярск, Год выпуска: 2002, Издательство: КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ, Жанр: Математика, Технические науки, Программирование, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Учебное пособие по курсу «Нейроинформатика»: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Учебное пособие по курсу «Нейроинформатика»»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Данное учебное пособие подготовлено на основе курса лекций по дисциплине «Нейроинформатика», читавшегося с 1994 года на факультете Информатики и вычислительной техники Красноярского государственного технического университета.
Несколько слов о структуре пособия. Далее во введении приведены
по данному курсу,
. Следующие главы содержат одну или несколько лекций. Материал, приведенный в главах, несколько шире того, что обычно дается на лекциях. В приложения вынесены описания программ, используемых в данном курсе (
и
), и
, включающий в себя два уровня — уровень запросов компонентов универсального нейрокомпьютера и уровень языков описания отдельных компонентов нейрокомпьютера.
Данное пособие является электронным и включает в себя программы, необходимые для выполнения лабораторных работ.

Учебное пособие по курсу «Нейроинформатика» — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Учебное пособие по курсу «Нейроинформатика»», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Нейронная сеть вычисляет некоторую вектор-функцию F от входных сигналов. Эта функция зависит от параметров сети. Обучение сети состоит в подборе такого набора параметров сети, чтобы величина была минимальной (в идеале равна нулю). Для того чтобы нейронная сеть могла хорошо приблизить заданную таблично функцию f необходимо, чтобы реализуемая сетью функция F при изменении входных сигналов с x i на x j могла изменить значение с f i на f j . Очевидно, что наиболее трудным для сети должно быть приближение функции в точках, в которых при малом изменении входных сигналов происходит большое изменение значения функции. Таким образом, наибольшую сложность будет представлять приближение функции f в точках, в которых достигает максимума выражение . Для аналитически заданных функций величина называется константой Липшица. Исходя из этих соображения можно дать следующее определение сложности задачи.

Сложность аппроксимации таблично заданной функции f , которая в точках x i принимает значения f i , задается выборочной оценкой константы Липшица, вычисляемой по следующей формуле:

(2)

Оценка (2) является оценкой константы Липшица аппроксимируемой функции снизу.

Для того, чтобы оценить способность сети заданной конфигурации решить задачу, необходимо оценить константу Липшица сети и сравнить ее с выборочной оценкой (2). Константа Липшица сети вычисляется по следующей формуле:

(3)

В формулах (2) и (3) можно использовать произвольные нормы. Однако для нейронных сетей наиболее удобной является евклидова норма. Далее везде используется евклидова норма.

В следующем разделе описан способ вычисления оценки константы Липшица сети (3) сверху. Очевидно, что в случае сеть принципиально не способна решить задачу аппроксимации функции f .

Оценка константы Липшица сети

Оценку константы Липшица сети будем строить в соответствии с принципом иерархического устройства сети, описанным в главе «Описание нейронных сетей». При этом потребуются следующие правила.

Для композиции функций fg = f ( g ( x )) константа Липшица оценивается как произведение констант Липшица:

Λ fg ≤ Λ f Λ g (4)

Для вектор-функции f =( f 1, f 2, … f n) константа Липшица равна:

(5)

Способ вычисления константы Липшица

Для непрерывных функций константа Липшица является максимумом производной в направлении r =( r 1, …, r n) по всем точкам и всем направлениям. При этом вектор направления имеет единичную длину:

Напомним формулу производной функции f ( x 1, …, x n) в направлении r :

(6)

Синапс

Обозначим входной сигнал синапса через x , а синаптический вес через α. Тогда выходной сигнал синапса равен α x . Поскольку синапс является функцией одной переменной, константа Липшица равна максимуму модуля производной — модулю синаптического веса:

Λ s=|α| (7)

Умножитель

Обозначим входные сигналы умножителя через x 1, x 2Тогда выходной сигнал умножителя равен . Используя (6) получаем . Выражение r 1 x 2+ r 2 x 1является скалярным произведением векторов ( r 1, r 2) и, учитывая единичную длину вектора r , достигает максимума, когда эти векторы сонаправлены. То есть при векторе

Используя это выражение, можно записать константу Липшица для умножителя:

(8)

Если входные сигналы умножителя принадлежат интервалу [ a,b ], то константа Липшица для умножителя может быть записана в следующем виде:

(9)

Точка ветвления

Поскольку в точке ветвления не происходит преобразования сигнала, то константа Липшица для нее равна единице.

Сумматор

Производная суммы по любому из слагаемых равна единице. В соответствии с (6) получаем:

(10)

поскольку максимум суммы при ограничении на сумму квадратов достигается при одинаковых слагаемых.

Нелинейный Паде преобразователь

Нелинейный Паде преобразователь или Паде элемент имеет два входных сигнала и один выходной. Обозначим входные сигналы через x 1, x 2. Используя (6) можно записать константу Липшица в следующем виде:

Знаменатель выражения под знаком модуля не зависит от направления, а числитель можно преобразовать так же, как и для умножителя. После преобразования получаем:

(11)

Нелинейный сигмоидный преобразователь

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Учебное пособие по курсу «Нейроинформатика»»

Представляем Вашему вниманию похожие книги на «Учебное пособие по курсу «Нейроинформатика»» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Учебное пособие по курсу «Нейроинформатика»»

Обсуждение, отзывы о книге «Учебное пособие по курсу «Нейроинформатика»» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x