Е. Миркес - Учебное пособие по курсу «Нейроинформатика»

Здесь есть возможность читать онлайн «Е. Миркес - Учебное пособие по курсу «Нейроинформатика»» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Красноярск, Год выпуска: 2002, Издательство: КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ, Жанр: Математика, Технические науки, Программирование, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Учебное пособие по курсу «Нейроинформатика»: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Учебное пособие по курсу «Нейроинформатика»»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Данное учебное пособие подготовлено на основе курса лекций по дисциплине «Нейроинформатика», читавшегося с 1994 года на факультете Информатики и вычислительной техники Красноярского государственного технического университета.
Несколько слов о структуре пособия. Далее во введении приведены
по данному курсу,
. Следующие главы содержат одну или несколько лекций. Материал, приведенный в главах, несколько шире того, что обычно дается на лекциях. В приложения вынесены описания программ, используемых в данном курсе (
и
), и
, включающий в себя два уровня — уровень запросов компонентов универсального нейрокомпьютера и уровень языков описания отдельных компонентов нейрокомпьютера.
Данное пособие является электронным и включает в себя программы, необходимые для выполнения лабораторных работ.

Учебное пособие по курсу «Нейроинформатика» — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Учебное пособие по курсу «Нейроинформатика»», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Кодирование неупорядоченных качественных признаков

Таблица 5. Кодирование неупорядоченного качественного признака

Состояние Вектор входных сигналов
α 1 ( b,a,a,…,a )
α 2 ( a,b,a,…,a )
α n ( a,a,…,a,b )

Поскольку никакие два состояния неупорядоченного признака не связаны отношением порядка, то было бы неразумным кодировать их разными величинами одного входного сигнала нейронной сети. Поэтому, для кодирования качественных признаков рекомендуется использовать столько входных сигналов, сколько состояний у этого качественного признака. Каждый входной сигнал соответствует определенному состоянию. Так если набор всех состояний рассматриваемого признака обозначить через α 1, α 2, …, α n, то рекомендуемая таблица кодировки имеет вид, приведенный в табл. 5.

Кодирование упорядоченных качественных признаков

Таблица 6. Кодирование упорядоченного качественного признака

Состояние Вектор входных сигналов
α 1 ( b,a,a,…,a )
α 2 ( b,b,a,…,a )
α n ( b,b,…,b,b )

Упорядоченные частные признаки, в отличие от неупорядоченных, имеют отношение порядка между состояниями. Однако кодирование их разными значениями одного входного сигнала неразумно из-за того, что расстояние между состояниями не определено, а такое кодирование эти расстояния задает явным образом. Поэтому, упорядоченные частные признаки рекомендуется кодировать в виде стольких входных сигналов, сколько состояний у признака. Но, в отличие от неупорядоченных признаков, накапливать число сигналов с максимальным значением. Для случая, когда все состояния обозначены через α 1< α 2< … < α n, рекомендуемая таблица кодировки приведена в табл. 6.

Числовые признаки

При предобработке численных сигналов необходимо учитывать содержательное значение признака, расположение значений признака в интервале значений, точность измерения значений признака. Продемонстрируем это на примерах.

Содержательное значение признака. Если входными данными сети является угол между двумя направлениями, например, направление ветра, то ни в коем случае не следует подавать на вход сети значение угла (не важно в градусах или радианах). Такая подача приведет к необходимости «уяснения» сетью того факта, что 0 градусов и 360 градусов одно и тоже. Разумнее выглядит подача в качестве входных данных синуса и косинуса этого угла. Число входных сигналов сети увеличивается, но зато близкие значения признака кодируются близкими входными сигналами.

Точность измерения признака . Так в метеорологии используется всего восемь направлений ветра. Значит, при подаче входного сигнала сети необходимо подавать не угол, а всего лишь информацию о том, в какой из восьми секторов этот угол попадает. Но тогда имеет смысл рассматривать направление ветра не как числовой параметр, а как неупорядоченный качественный признак с восемью состояниями.

Расположение значений признака в интервале значений. Следует рассмотреть вопрос о равнозначности изменения значения признака на некоторую величину в разных частях интервала значений признака. Как правило, это связано с косвенными измерениями (вместо одной величины измеряется другая). Например, сила притяжения двух небесных тел при условии постоянства массы однозначно характеризуется расстоянием между ними. Пусть рассматриваются расстояния от 1 до 100 метров. Легко понять, что при изменении расстояния с 1 до 2 метров, сила притяжения изменится в четыре раза, а при изменении с 99 до 100 метров — в 1.02 раза. Следовательно, вместо подачи расстояния следует подавать обратный квадрат расстояния c '=1/ c ².

Простейшая предобработка числовых признаков

Как уже отмечалось в разделе «Различимость входных данных»числовые сигналы рекомендуется масштабировать и сдвигать так, чтобы весь диапазон значений попадал в диапазон приемлемых входных сигналов. Эта предобработка проста и задается следующей формулой:

(1)

где [ a,b ] — диапазон приемлемых входных сигналов, [ c min, c max] — диапазон значений признака c , c ' — предобработанный сигнал, который будет подан на вход сети. Предобработку входного сигнала по формуле (1) будем называть простейшей предобработкой.

Оценка способности сети решить задачу

В данном разделе рассматриваются только сети, все элементы которых непрерывно зависят от своих аргументов (см. главу «Описание нейронных сетей»). Предполагается, что все входные данные предобработаны так, что все входные сигналы сети лежат в диапазоне приемлемых входных сигналов [ a,b ]. Будем обозначать вектора входных сигналов через x i , а требуемые ответы сети через f i . Компоненты векторов будем обозначать нижним индексом, например, компоненты входного вектора через x i j . Будем полагать, что в каждом примере ответ является вектором чисел из диапазона приемлемых сигналов [ a,b ]. В случае обучения сети задаче классификации требуемый ответ зависит от вида используемого интерпретатора ответа (см. главу «Оценка и Интерпретатор ответа»).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Учебное пособие по курсу «Нейроинформатика»»

Представляем Вашему вниманию похожие книги на «Учебное пособие по курсу «Нейроинформатика»» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Учебное пособие по курсу «Нейроинформатика»»

Обсуждение, отзывы о книге «Учебное пособие по курсу «Нейроинформатика»» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x