Е. Миркес - Учебное пособие по курсу «Нейроинформатика»

Здесь есть возможность читать онлайн «Е. Миркес - Учебное пособие по курсу «Нейроинформатика»» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Красноярск, Год выпуска: 2002, Издательство: КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ, Жанр: Математика, Технические науки, Программирование, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Учебное пособие по курсу «Нейроинформатика»: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Учебное пособие по курсу «Нейроинформатика»»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Данное учебное пособие подготовлено на основе курса лекций по дисциплине «Нейроинформатика», читавшегося с 1994 года на факультете Информатики и вычислительной техники Красноярского государственного технического университета.
Несколько слов о структуре пособия. Далее во введении приведены
по данному курсу,
. Следующие главы содержат одну или несколько лекций. Материал, приведенный в главах, несколько шире того, что обычно дается на лекциях. В приложения вынесены описания программ, используемых в данном курсе (
и
), и
, включающий в себя два уровня — уровень запросов компонентов универсального нейрокомпьютера и уровень языков описания отдельных компонентов нейрокомпьютера.
Данное пособие является электронным и включает в себя программы, необходимые для выполнения лабораторных работ.

Учебное пособие по курсу «Нейроинформатика» — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Учебное пособие по курсу «Нейроинформатика»», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Приведенный выше способ уменьшения критерия Липшица не единственный. В следующем разделе рассмотрен ряд способов предобработки, решающих ту же задачу.

Другие способы предобработки числовых признаков

В данном разделе будет рассмотрено три вида предобработки числовых признаков — модулярный, позиционный и функциональный. Основная идея этих методов предобработки состоит в том, чтобы сделать значимыми малые отличия больших величин. Действительно, пусть для ответа существенно изменение величины признака на единицу при значении признака порядка миллиона. Очевидно, что простейшая предобработка (1) сделает отличие в единицу неразличимым для нейронной сети при абсолютных значениях порядка миллиона.

Все эти виды предобработки обладают одним общим свойством — за счет кодирования входного признака несколькими сигналами они уменьшают сложность задачи (критерий Липшица).

Модулярная предобработка

Зададимся некоторым набором положительных чисел y 1, …, y k . Определим сравнение по модулю для действительных чисел следующим образом:

x mod y = x-y·Int ( x/y ), (15)

где Int ( x ) — функция, вычисляющая целую часть величины x путем отбрасывания дробной части. Очевидно, что величина x mod y лежит в интервале (- y, y ).

Кодирование входного признака x при модулярной предобработке вектором Z производится по следующей формуле:

(16)

Таблица 8. Пример сигналов при модулярном вводе

x x mod 3 x mod 5 x mod 7 x mod 11
5 2 0 5 5
10 1 0 3 10
15 0 0 1 3

Однако модулярная предобработка обладает одним отрицательным свойством — во всех случаях, когда y iy r 1, при целом r , разрушается отношение предшествования чисел. В табл. 8 приведен пример векторов. Поэтому, модульная предобработка пригодна при предобработке тех признаков, у которых важна не абсолютная величина, а взаимоотношение этой величины с величинами y 1, …, y k .

Примером такого признака может служить угол между векторами, если в качестве величин y выбрать y i =π/ i .

Функциональная предобработка

Функциональная предобработка преследует единственную цель — снижение константы Липшица задачи. В разделе «Предобработка, облегчающая обучение», был приведен пример такой предобработки. Рассмотрим общий случай функциональной предобработки, отображающих входной признак x в k- мерный вектор z . Зададимся набором из k чисел, удовлетворяющих следующим условиям: x min< y 1<���…< y k -1< y k < x max.

Таблица 9. Пример функциональной предобработки числового признака x ∈[0,5], при условии, что сигналы нейронов принадлежат интервалу [-1,1]. В сигмоидной предобработке использована φ( x )= x /(1+| x |), а в шапочной — φ( x )=2/(1+ x ²)-1. Были выбраны четыре точки y i=i .

x z 1( x ) z 2( x ) z 3( x ) z 4( x )
Линейная предобработка
1.5 0.5 -0.5 -1 -1
3.5 1 1 0.5 -0.5
Сигмоидная предобработка
1.5 0.3333 -0.3333 -0.6 -0.7142
3.5 0.7142 0.6 0.3333 -0.3333
Шапочная предобработка
1.5 0.6 0.6 -0.3846 -0.7241
3.5 -0.7241 -0.3846 0.6 0.6

Пусть φ — функция, определенная на интервале [ x min- y k , x max- y 1], а φ min, φ max— минимальное и максимальное значения функции φ на этом интервале. Тогда i- я координата вектора z вычисляется по следующей формуле:

(17)

Линейная предобработка. В линейной предобработке используется кусочно линейная функция:

(18)

Графики функций z i ( x ) представлены на рис. 2а. Видно, что с увеличением значения признака x ни одна функция не убывает, а их сумма возрастает. В табл. 9 представлены значения этих функций для двух точек — x 1=1.5 и x 2=3.5.

Сигмоидная предобработка. В сигмоидной предобработке может использоваться любая сигмоидная функция. Если в качестве сигмоидной функции использовать функцию S 2, приведенную в разделе «Нейрон»этой главы, то формула (17) примет следующий вид:

Графики функций z i ( x ) представлены на рис. 2б. Видно, что с увеличением значения признака x ни одна функция не убывает, а их сумма возрастает. В табл. 9 представлены значения этих функций для двух точек x 1=1.5 и x 2=3.5.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Учебное пособие по курсу «Нейроинформатика»»

Представляем Вашему вниманию похожие книги на «Учебное пособие по курсу «Нейроинформатика»» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Учебное пособие по курсу «Нейроинформатика»»

Обсуждение, отзывы о книге «Учебное пособие по курсу «Нейроинформатика»» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x