Е. Миркес - Учебное пособие по курсу «Нейроинформатика»

Здесь есть возможность читать онлайн «Е. Миркес - Учебное пособие по курсу «Нейроинформатика»» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Красноярск, Год выпуска: 2002, Издательство: КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ, Жанр: Математика, Технические науки, Программирование, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Учебное пособие по курсу «Нейроинформатика»: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Учебное пособие по курсу «Нейроинформатика»»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Данное учебное пособие подготовлено на основе курса лекций по дисциплине «Нейроинформатика», читавшегося с 1994 года на факультете Информатики и вычислительной техники Красноярского государственного технического университета.
Несколько слов о структуре пособия. Далее во введении приведены
по данному курсу,
. Следующие главы содержат одну или несколько лекций. Материал, приведенный в главах, несколько шире того, что обычно дается на лекциях. В приложения вынесены описания программ, используемых в данном курсе (
и
), и
, включающий в себя два уровня — уровень запросов компонентов универсального нейрокомпьютера и уровень языков описания отдельных компонентов нейрокомпьютера.
Данное пособие является электронным и включает в себя программы, необходимые для выполнения лабораторных работ.

Учебное пособие по курсу «Нейроинформатика» — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Учебное пособие по курсу «Нейроинформатика»», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В этой главе будут описаны различные виды входных сигналов и способы их предобработки. В качестве примера будут рассмотрены сети с сигмоидными нелинейными преобразователями. Однако, описываемые способы предобработки применимы для сетей с произвольными нелинейными преобразователями. Единственным исключением является раздел «Оценка способности сети решить задачу», который применим только для сетей с нелинейными преобразователями, непрерывно зависящими от своих аргументов.

Наиболее важным в данной являются следующее.

При предобработке качественных признаков не следует вносить недостоверную информацию.

Сформулирована мера сложности нейросетевой задачи.

Выборочная оценка константы Липшица и оценка константы Липшица нейронной сети позволяют легко оценить способность нейронной сети решить поставленную задачу. Эти легко реализуемые процедуры позволяют сэкономить время и силы.

Правильно выбранная предобработка упрощает нейросетевую задачу.

Нейрон

Нейроны, используемые в большинстве нейронных сетей, имеют структуру, приведенную на рис. 1. На рис. 1 использованы следующие обозначения:

x — вектор входных сигналов нейрона;

α — вектор синаптических весов нейрона;

Σ — входной сумматор нейрона;

p = (α,x) — выходной сигнал входного сумматора;

σ — функциональный преобразователь;

y — выходной сигнал нейрона.

Обычно нейронные сети называют по виду функции σ(p) . Хорошо известны и наиболее часто используются два вида сигмоидных сетей:

S 1: σ( p ) = 1/(1+exp(- cp )),

S 2: σ( p ) = p /( c +| p |),

где c — параметр, называемый «характеристикой нейрона». Обе функции имеют похожие графики.

Каждому типу нейрона соответствует свой интервал приемлемых входных данных. Как правило, этот диапазон либо совпадает с диапазоном выдаваемых выходных сигналов (например для сигмоидных нейронов с функцией S 1 ), либо является объединением диапазона выдаваемых выходных сигналов и отрезка, симметричного ему относительно нуля (например, для сигмоидных нейронов с функцией S 2 ), Этот диапазон будем обозначать как [ a,b ]

Различимость входных данных

Очевидно, что входные данные должны быть различимы. В данном разделе будут приведены соображения, исходя из которых, следует выбирать диапазон входных данных. Пусть одним из входных параметров нейронной сети является температура в градусах Кельвина. Если речь идет о температурах близких к нормальной, то входные сигналы изменяются от 250 до 300 градусов. Пусть сигнал подается прямо на нейрон (синаптический вес равен единице). Выходные сигналы нейронов с различными параметрами приведены в табл. 1.

Таблица 1

Входной сигнал Нейрон типа S 1 Нейрон типа S 2
c =0.1 c =0.5 c =1 c =2 c =0.1 c =0.5 c =1 c =2
250 1.0 1.0 1.0 1.0 0.99960 0.99800 0.99602 0.99206
275 1.0 1.0 1.0 1.0 0.99964 0.99819 0.99638 0.99278
300 1.0 1.0 1.0 1.0 0.99967 0.99834 0.99668 0.99338

Совершенно очевидно, что нейронная сеть просто неспособна научиться надежно различать эти сигналы (если вообще способна научиться их различать!). Если использовать нейроны с входными синапсами, не равными единице, то нейронная сеть сможет отмасштабировать входные сигналы так, чтобы они стали различимы, но при этом будет задействована только часть диапазона приемлемых входных данных — все входные сигналы будут иметь один знак. Кроме того, все подаваемые сигналы будут занимать лишь малую часть этого диапазона. Например, если мы отмасштабируем температуры так, чтобы 300 соответствовала величина суммарного входного сигнала равная 1 (величина входного синапса равна 1/300), то реально подаваемые сигналы займут лишь одну шестую часть интервала [0,1] и одну двенадцатую интервала [-1,1]. Получаемые при этом при этом величины выходных сигналов нейронов приведены в табл. 2.

Таблица 2

Входной сигнал Нейрон типа S 1 Нейрон типа S 2
c =0.1 c =0.5 c =1 c =2 c =0.1 c =0.5 c =1 c =2
250 (0.83) 0.52074 0.60229 0.69636 0.84024 0.89286 0.62500 0.45455 0.29412
275 (0.91) 0.52273 0.61183 0.71300 0.86057 0.90164 0.64706 0.47826 0.31429
300 (1.0) 0.52498 0.62246 0.73106 0.88080 0.90909 0.66667 0.50000 0.33333

Сигналы, приведенные в табл. 2 различаются намного сильнее соответствующих сигналов из табл. 1. Таким образом, необходимо заранее позаботиться о масштабировании и сдвиге сигналов, чтобы максимально полно использовать диапазон приемлемых входных сигналов. Опыт использования нейронных сетей с входными синапсами свидетельствует о том, что в подавляющем большинстве случаев предварительное масштабирование и сдвиг входных сигналов сильно облегчает обучение нейронных сетей. Если заранее произвести операции масштабирования и сдвига входных сигналов, то величины выходных сигналов нейронов даже при отсутствии входных синапсов будут различаться еще сильнее (см. табл. 3).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Учебное пособие по курсу «Нейроинформатика»»

Представляем Вашему вниманию похожие книги на «Учебное пособие по курсу «Нейроинформатика»» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Учебное пособие по курсу «Нейроинформатика»»

Обсуждение, отзывы о книге «Учебное пособие по курсу «Нейроинформатика»» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x