Я хотел бы процитировать и кратко прокомментировать еще одно замечание Бальбуса , ибо, как мне кажется, некоторые читатели могли бы извлечь из него мораль. Вот что он пишет: «В сущности безразлично, будем ли мы при решении данной задачи пользоваться словами и называть это арифметикой или прибегнем к буквам и символам и назовем его алгеброй». Оба определения (и арифметики, и алгебры) мне представляются неверными. Арифметический метод решения задачи является чисто синтетическим: от одного известного факта он переходит к другому до тех пор, пока желанная цель не будет достигнута. Алгебраический же метод решения по своей природе аналитический: он начинает с конца и, обозначив цель поиска условным символом, устремляется к началу и влечет за собой свою жертву-инкогнито до тех пор, пока не выходит на ослепительный свет известных фактов, срывает с нее маску и говорит: «Я тебя знаю!»
Чтобы не быть голословным, приведу пример. Представьте себе, что к вам в дом забрался грабитель и, похитив какие-то вещи, скрылся. Вы зовете на помощь дежурного полисмена. Отчет о дальнейших событиях в устах полисмена мог бы звучать, например, так:
— Да, мэм, я видел, как какой-то верзила перелез через забор вашего сада, но от меня это было далековато и сразу схватить его я не мог. А что, думаю, если я побегу ему наперерез? И точно, только я выбежал на соседнюю улицу, гляжу — из-за угла на всех парах катит Билл Сайкс собственной персоной. Я его цап за воротник:
— Ага, голубчик, попался! Тебя-то мне и надо!
Больше я ему ничего не сказал. А он мне в ответ:
— Ладно, — говорит, — фараон, твоя взяла. Веди в участок, ничего не попишешь!
Так действовал бы арифметический полисмен. А вот другой отчет о тех же событиях:
— Вижу, кто-то бежит. Что делать? Пуститься за ним вслед? Не имеет смысла: больно далеко он ушел, все равно не догонишь. Вот я и решил осмотреть сад. Гляжу — на клумбе, где этот парень помял все ваши цветы, следы остались: такие, знаете, ясные, четкие отпечатки его ножищ. Пригляделся повнимательней — так и есть: левый каблук везде отпечатался глубже, чем правый. Тут я говорю себе: «Парень, что их оставил, должно быть, высокого роста и хром на левую ногу». Провел я рукой по стене в том месте, где он перелез, и вижу: на руке сажа. Я и подумал: «Где я мог видеть здоровенного парня, трубочиста, да к тому же хромого на левую ногу?» И тут меня как громом ударило: «Да ведь это же Билл Сайкс!»
Так действовал бы алгебраический полисмен — на мой взгляд, более интеллектуальный тип полисмена, чем первый.
Задача 1.
Расположить 24 поросенка в четырех свинарниках так, чтобы при обходе свинарников по кругу число поросят в очередном свинарнике неизменно оказывалось ближе к 10, чем число поросят в предыдущем свинарнике.
Ответ.
В первом свинарнике должно находится 8 поросят, во втором — 10 и в четвертом — 6. Ничего не должно находиться в третьем свинарнике: он должен быть пуст. Совершаем контрольный обход свинарников. Десять ближе к 10, чем 8. Что может быть ближе к 10, чем 10? Ничто! Но именно «ничто» и находится в третьем свинарнике. Шесть ближе к 10, чем 0 (арифметический псевдоним «ничего»), 8 ближе к 10, чем 6. Условия задачи выполнены.
Задача 2.
Из некоторого пункта в обе стороны каждые 15 минут отправляются омнибусы. Пешеход выходит из того же пункта в момент отправления омнибусов и встречает первый омнибус через 12 1/ 2минуты. Когда пешехода нагонит первый омнибус?
Ответ.
Через 6 1/ 4минуты после встречи с первым омнибусом.
Решение.
Пусть a — расстояние, проходимое омнибусом за 15 минут, а x — расстояние от пункта отправления до того места, где омнибус нагонит пешехода. Поскольку встреченный пешеходом омнибус прибывает в пункт отправления через 2 1/ 2минуты после встречи, он за эти 2 1/ 2минуты проезжает расстояние, на преодоление которого у пешехода ушло 12 1/ 2минуты. Следовательно, скорость омнибуса в 5 раз превышает скорость пешехода. Омнибус, который нагонит пешехода в тот момент, когда пешеход пускается в путь, находится на расстоянии а от пункта отправления. Следовательно, к тому моменту, когда путешественник проходит расстояние x , омнибус успевает проехать расстояние a + x. Учитывая соотношение скоростей, получаем a + x = 5x, то есть 4x = a, откуда x = а/ 4. Это расстояние омнибус преодолевает за 15/ 4минуты. Следовательно, пешеход проходит его за 5× 15/ 4минуты. Таким образом, омнибус нагоняет пешехода через 18 3/ 4минуты после того, как тот отправился в путь, или (что то же) через 6 1/ 4минуты после встречи с первым омнибусом.
Читать дальше
Конец ознакомительного отрывка
Купить книгу