Льюис Кэрролл - История с узелками

Здесь есть возможность читать онлайн «Льюис Кэрролл - История с узелками» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М., Год выпуска: 2010, ISBN: 2010, Издательство: Альфа-книга, Жанр: Математика, Детская образовательная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

История с узелками: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «История с узелками»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

История с узелками — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «История с узелками», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Почему оценки претенденток надлежит именно перемножать, а не складывать, подробно объясняется, во многих учебниках, и я не буду занимать здесь место повторением избитых истин. Однако проиллюстрировать необходимость умножения можно очень легко на примере длины, ширины и глубины. Представим себе, что два землекопа Аи Впожелали узнать, кто из них более искусен в своем ремесле. Оба копают ямы в форме прямоугольного параллелепипеда. Количество проделанной работы измеряется числом кубических футов вынутой земли. Предположим, что Авыкопал яму длиной 10, шириной 10 и глубиной 2 фута, а Ввыкопал яму длиной 6, шириной 5 и глубиной 10 футов. Объем первой ямы равен 200, а второй — 300 кубическим футам. Следовательно, Bсправляется со своим делом в 3/ 2раза лучше, чем А. А теперь попробуйте оценить по десятибалльной системе длину, ширину и глубину каждой из ям, а затем сложить оценки. Что у вас получится?

Некоторые письма, полученные в связи с узелком VI, навели меня на мысль о желательности дополнительных объяснений.

Первая задача, разумеется, не более чем шутка, основанная на игре слов. Я считал, что подобная вольность вполне допустима в серии задач, призванной не столько поучать, сколько развлекать. Однако двое моих корреспондентов, полагающих, что Аполлон должен всегда быть начеку и не ослаблять тетивы своего разящего лука, обрушились на задачку о 60 000 фунтов стерлингов с уничтожающей критикой. Кстати сказать, ни один из них не смог решить задачу, но такова уж человеческая натура.

Как-то раз (для желающих я могу назвать точную дату: 31 сентября) я встретил своего старого друга Брауна и загадал ему только что услышанную загадку. Мощным усилием своего колоссального интеллекта Браун разгадал ее. «Правильно!» — сказал я, услышав ответ. «Очень хорошая загадка, — похвалил меня Браун, — не всякий ее разгадает. Нет, что и говорить, загадка — просто прелесть!» Не успел я распрощаться с Брауном, как через несколько шагов налетел на Смита и задал ему ту же загадку. Тот на минуту наморщил лоб, а потом махнул рукой. Дрожащим голосом я робко пролепетал ответ. «Дурацкая загадка, сэр! — недовольно проворчал Смит на прощание. — Глупее не придумаешь! Удивляюсь, как вы решаетесь повторять подобную чепуху!» Тем не менее есть все основания считать, что Смит по уму не только не уступает Брауну, но и, быть может, даже превосходит его!

Вторая задача представляет собой пример на обычное тройное правило. Сущность его сводится к следующему. Результат зависит от нескольких изменяющихся параметров, которые связаны между собой так, что если бы все параметры, кроме одного, имели постоянные значения, то результат изменялся бы пропорционально параметру, оставшемуся свободным; поскольку варьируются все параметры, то результат изменяется пропорционально их произведению. Так, например, объем ямы, имеющей форму прямоугольного параллелепипеда при постоянной длине и ширине, изменяется пропорционально глубине ямы, а при переменной длине, ширине и глубине — пропорционально произведению всех трех измерений.

При иной связи результата с исходными данными тройное правило перестает действовать и задача нередко становится чрезвычайно сложной.

Приведем несколько примеров. Предположим, что на конкурсном экзамене по французскому, немецкому и итальянскому языку за право получать некую стипендию борются два кандидата: Аи В.

а. Согласно правилам, которыми руководствуется экзаменационная комиссия, результат экзамена зависит от относительного уровня знаний кандидатов по каждому языку. Это означает, что независимо от того, получит ли Апо французскому языку 1, а В— 2 или же Аполучит 100, а В— 200, результат экзамена будет одним и тем же. Кроме того, правилами предусмотрено, что если по двум языкам оба кандидата получат одинаковые оценки, то их общие оценки должны находиться одна к другой в таком же отношении, в каком находятся оценки, полученные кандидатами по третьему языку. При этих условиях исход экзамена удовлетворяет тройному правилу. Дабы получить окончательное представление о шансах кандидатов на стипендию, мы должны перемножить 3 оценки, полученные А, и сравнить произведение с произведением очков, набранных В. Обратите внимание на то, что если Аполучит хоть один «нуль», то его итоговой оценкой также будет «нуль», даже если по двум остальным языкам он получит наивысший балл, а Ввыйдет в победители, набрав всего лишь по одному очку за каждый язык. Разумеется, Аоказывается в очень невыгодном положении, хотя решение комиссии будет абсолютно правильным с точки зрения существующих правил.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «История с узелками»

Представляем Вашему вниманию похожие книги на «История с узелками» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «История с узелками»

Обсуждение, отзывы о книге «История с узелками» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x