Одно дело — подозревать, что лучники и астрономы, химики и маркетологи сталкиваются с одним и тем же законом распределения ошибок, и совсем другое — самому натолкнуться на частный случай этого закона. Подталкиваемые необходимостью анализировать данные астрономических наблюдений ученые, такие как Даниил Бернулли и Лаплас, постулировали в конце XVIII в. несколько вариантов закона, оказавшихся неверными. Однако выяснилось, что математическая функция, верно отражающая закон случайного распределения ошибок, — колоколообразная кривая — все это время была у них под носом. За много десятилетий до них она была открыта в Лондоне в контексте решения совсем иных задач.

Среди троих ученых, благодаря которым на колоколообразную кривую обратили внимание, реже всех воздается по заслугам именно ее первооткрывателю. Абрахам де Муавр совершил свое открытие в 1733 г., когда ему было за шестьдесят, однако до появления второго издания его книги «Об измерении случайности», вышедшего в свет пять лет спустя, об этом никто не знал. Де Муавр пришел к искомой форме кривой, когда пытался аппроксимировать числа, заполняющие треугольник Паскаля значительно дальше той строки, на которой оборвал его я, — сотнями и даже тысячами строк ниже. Когда Якоб Бернулли обосновывал свой вариант закона больших чисел, ему пришлось столкнуться с некоторыми свойствами чисел, появляющихся в этих строках. А числа действительно очень велики: например, одно из чисел в двухсотой строке треугольника Паскаля состоит из пятидесяти девяти цифр! Во времена Бернулли, да и вообще до тех пор, пока не появились компьютеры, эти числа было очень трудно высчитать. Именно поэтому, как я сказал, Бернулли обосновывал свой закон больших чисел, используя различные способы приближенного вычисления, что снижало практическую значимость результатов его работы. Де Муавр со своей кривой осуществил несравненно более точную аппроксимацию и потому значительно улучшил оценки Бернулли.
Как де Муавр осуществил свою аппроксимацию, становится понятно, если числа в ряду треугольника представить в виде высоты столбика на гистограмме — я поступил так с регистрационными карточками. Например, числа в третьей строке треугольника — 1, 2, 1. Тогда на гистограмме первый столбик будет высотой в одно деление, второй — вдвое выше, а третий — вновь высотой в одно деление. Рассмотрим теперь пять чисел в пятой строке: 1, 4, 6, 4, 1. На гистограмме будет пять столбиков, она вновь начнется с минимальной высоты, достигнет максимума в центре и продемонстрирует симметричное снижение. Если спуститься по треугольнику вниз, получатся гистограммы с огромным количеством столбиков, но поведение их будет тем же самым. Гистограммы для 10-й, 100-й и 1000-й строк треугольника Паскаля приведены ниже.
Столбцы в представленных выше гистограммах отображают относительную величину числа в 10-м, 100-м и 1000-м рядах треугольника Паскаля (см. выше). Числа по оси абсцисс — элементы строки треугольника, к которым относятся столбики. По традиции нумерация начинается с 0, а не с 1 (средняя и нижняя гистограммы обрезаны так, что элементы, столбики для которых имеют пренебрежимую высоту, на рисунке не представлены).
Если теперь провести кривые, соединяющие вершины столбиков на каждой из гистограмм, все они окажутся характерной формы, напоминающей колокол. А если несколько сгладить эти кривые, можно подобрать соответствующее им математическое выражение. Колоколообразная кривая — не просто визуализация чисел в треугольнике Паскаля: это инструмент, позволяющий получить точные и удобные в употреблении оценки значений чисел, появляющихся в расположенных ниже строках треугольника. В этом и состояло открытие де Муавра.
Сегодня колоколообразную кривую называют обычно нормальным распределением, а иногда — Гауссовой кривой (вскоре читатель узнает, откуда взялось это название). Нормальное распределение — не отдельная фиксированная кривая, но целое семейство кривых, определяемых двумя параметрами, задающими положение кривой и ее форму. Первый из них — расположение пика: в графиках выше это 5, 50 и 500 соответственно. Второй — степень разброса. Этот показатель, получивший свое современное наименование лишь в 1894 г., называется стандартным отклонением и представляет собой теоретический аналог понятия, о котором я уже упоминал — выборочного стандартного отклонения. Грубо говоря, это половина ширины кривой в той точке, где кривая достигает своей 60%-ной высоты. В наше время значение нормального распределения выходит далеко за пределы аппроксимации чисел в треугольнике Паскаля. Это самая распространенная форма распределения любого рода данных.
Читать дальше
Конец ознакомительного отрывка
Купить книгу