Стандартное отклонение показывает, насколько данные по выборке близки к среднему — или, в практическом смысле, какова погрешность измерения. Если оно невысоко, все данные группируются вокруг среднего. Например, для случая, когда все дегустаторы поставили вину оценку 90, стандартное отклонение равно 0, указывая на то, что все измерения идентичны среднему значению. В случае же высокого стандартного отклонения данные разбросаны относительно среднего. Например, когда вино оценивается дегустаторами в диапазоне от 80 до 100, выборочное стандартное отклонение равно 6. Это означает, что на практике большинство оценок попадет в диапазон от −6 до +6 относительно среднего. В рассмотренном случае о вине можно с высокой степенью уверенности сказать, что его истинная оценка, скорее всего, относится к диапазону от 84 до 96.
Пытаясь понять значение своих измерений, ученые XVIII–XIX вв. сталкивались с теми же проблемами, что и скептически настроенные ценители хороших вин. Ибо если группа исследователей осуществляет ряд наблюдений и измерений, результаты почти всегда получаются разными. Один астроном мог столкнуться с неблагоприятными погодными условиями, другой — покачнуться из-за порыва ветра, третий, возможно, только что вернулся от Уильяма Джеймса, с которым вместе дегустировал мадеру. В 1838 г. математик и астроном Ф.В. Бессель выделил одиннадцать классов случайных ошибок, которые могут возникнуть в ходе любого наблюдения с использованием телескопа. Даже если один и тот же астроном осуществляет ряд повторных измерений, результаты могут различаться из-за таких факторов, как неустойчивая острота зрения и влияние температуры воздуха на аппаратуру. Поэтому астрономам пришлось разбираться, как на основе ряда несовпадающих измерений установить истинное положение небесного тела. Но из того, что ценители вин и ученые сталкиваются с одной и той же проблемой, совсем не обязательно следует, что для них годится одно и то же решение. Можно ли выделить универсальные характеристики случайной ошибки, или же ее природа зависит от контекста?
Одним из первых предположение о том, что для разных типов измерений характерны одни и те же особенности, выдвинул Даниил Бернулли, племянник Якоба Бернулли. В 1777 г. он уподобил случайную ошибку в астрономическом наблюдении отклонениям в траектории выпущенной из лука стрелы. В обоих случаях, рассуждал он, цель — истинное значение измеряемой переменной или же «яблочко» мишени — располагается где-то посреди, а наблюдаемые результаты группируются вокруг нее, причем большинство должны лежать в окрестностях цели, и лишь немногие выпадают за их пределы. Закон, который Бернулли предложил для описания этого распределения, оказался неверен, однако важно само понимание того, что распределение ошибок лучника может быть сходно с распределением ошибок в наблюдениях астрономов.
Идея о том, что распределение ошибок подчиняется некому универсальному закону, который называют законом случайного распределения ошибок, является основополагающей для теории измерения. И вот что примечательно: допущение состоит в том, что при условии удовлетворения определенных условий довольно общего характера установить истинное значение некоторой переменной на основе ряда измерений можно с использованием одного и того же математического аппарата. Если в дело вступает универсальный закон, то задача установления истинного положения небесного тела на основе ряда наблюдений астрономов приравнивается к задаче нахождения центра мишени на основе дырочек от стрел или определения «качества» вина на основе ряда экспертных оценок. Именно поэтому математическая статистика — последовательная и согласованная область, а не просто набор трюков: неважно, осуществляете ли вы ряд измерений для того, чтобы установить положение Юпитера в 4 часа утра на Рождество или средний вес булок с изюмом, выходящих с конвейера, распределение ошибок будет одним и тем же.
Однако отсюда не следует, что случайная ошибка — единственный вид ошибок, которые могут повлиять на измерение. Если половина дегустаторов предпочитает красное вино, а другая половина — белое, однако во всех остальных отношениях они сходятся в своих суждениях (и предельно последовательны в их вынесении), то оценка каждого конкретного вина не будет определяться законом случайного распределения ошибок: распределение получится резко двугорбым, причем причиной появления одного из пиков станут любители красного вина, а другого — любители белого. Но даже в тех случаях, когда применимость закона случайного распределения ошибок не столь очевидна (начиная от футбольного тотализатора {143} 143 Hal Stern, «On the Probability of Winning a Football Game», American Statistician 45, no. 3 (August 1991): 179-82.
и заканчивая измерением коэффициента интеллекта), зачастую он все же оказывается применим. Много лет назад мне в руки попали несколько тысяч регистрационных карточек покупателей компьютерной программы, которую разработал для восьми- и девятилетних школьников мой приятель. Продажи шли не так хорошо, как ожидалось. Кто же покупал программу? После некоторых подсчетов я установил, что наибольшее число пользователей приходится на семилетних, указывая на нежелательное, но не то чтобы неожиданное расхождение. Но вот что самое удивительное: когда я построил гистограмму зависимости количества пользователей от возраста, взяв семь лет за среднее значение, я обнаружил, что построенный мною график принял крайне знакомую форму — форму закона случайного распределения ошибок.
Читать дальше
Конец ознакомительного отрывка
Купить книгу