Теперь «урежем» пространство элементарных событий — включим в него только тех, результаты анализов которых оказались положительными. У нас останется 10 человек из категории «ложная положительность» и 1 человек из категории «истинная положительность». Другими словами, лишь 1 человек из 11, результаты анализов которых оказались положительными, действительно ВИЧ-инфицирован. Врач сказал мне: вероятность того, что в анализе ошибка — на самом же деле я был совершенно здоров, — равна 1 из 1 000. А на самом деле ему следовало сказать следующим образом: «Не волнуйтесь, шансы на то, что вы на самом деле не инфицированы, выше 10 из 11». В моем случае на результаты пробы для выявления скрытой формы заболевания повлияли определенные метки, которые присутствовали в моей крови, хотя вирус, ради которого и брали пробу, отсутствовал.
При оценке любого диагностического испытания важно знать, каков показатель «ложной положительности». Например, анализ, который выявляет 99% всех злокачественных опухолей, производит сильное впечатление, однако я с легкостью могу придумать анализ, который выявляет 100% всех злокачественных опухолей. Для этого мне только и надо что находить у каждого осматриваемого пациента опухоль. Статистический показатель, отличающий мой анализ от действительно полезного, заключается в следующем: в результате моего анализа показатель «ложной положительности» окажется высоким. Однако вышеприведенный пример демонстрирует: осведомленности о показателе «ложной положительности» недостаточно для того, чтобы определить, полезен анализ или не полезен. Необходимо также знать, как показатель «ложной положительности» соотносится с истинной распространенностью заболевания. Если заболевание обычное, положительный результат будет гораздо более убедительным. Чтобы увидеть, как истинная распространенность связана с положительными результатами анализа, предположим, что я гомосексуалист, и результаты анализа у меня положительные. Предположим, что в сообществе гомосексуалистов вероятность заражения среди тех, кто сдал анализы в 1989 г., была около 1%. Что значит: среди результатов 10 000 анализов мы должны обнаружить не 1 (как ранее), а 100 «истинно положительных» вместе с 10 «ложно положительными». Таким образом, в данном случае вероятность того, что положительный результат означал мою инфицированность, должна была равняться 10 из 11. Вот почему при оценке результатов неплохо выяснить: относитесь вы к группе повышенного риска или нет.

Теория Байеса говорит о следующем: вероятность того, что А произойдет, если произойдет В, обычно отличается от вероятности того, что В произойдет, если А произойдет {108} 108 Если быть точным, вероятность того, что А произойдет, если произойдет В, равна вероятности того, что В произойдет, если произойдет А, помноженной на поправочный коэффициент, который уравнивает между собой вероятность А и вероятность В.
. Что не принимается во внимание и является частой ошибкой среди врачей. Например, во время исследований в Германии и США терапевтов попросили подсчитать вероятность того, что не обнаруживающая симптомов рака женщина в возрасте между 40 и 50, чья маммограмма показывает рак, на самом деле больна раком груди, если при этом в 7% случаев маммограммы диагностируют рак, когда на самом деле его нет {109} 109 Gerd Gigerenzer, Calculated Risks: How to Know When Numbers Deceive You (New York: Simon & Schuster, 2002), pp. 40–44.
. Кроме того, врачам сообщили, что в реальности частота возникновения заболевания равна примерно 0,8% и что «ложно отрицательные» результаты равны примерно 10%. Принимая все вышесказанное во внимание, можно с помощью метода Байеса определить, что «положительная» маммограмма диагностирует рак лишь примерно в 9% всех случаев. Однако в немецкой группе треть врачей пришли к выводу, что вероятность равна примерно 90%, а срединное значение оказалось равно 70%. В американской группе у 95 из 100 врачей вероятность оказалась равна примерно 75%.
Подобная же ситуация складывается и с проверкой спортсменов на допинг. Цифры, на которые часто ссылаются, на самом деле не соответствуют действительности, являясь относительным числом ложно положительных заключений. И дают искаженное представление о вероятности того, что спортсмен виноват в приеме допинга. Например, Мэри Дэкер Слэни, бегунья мирового класса и чемпионка 1983 г. в забегах на 1 500 и 3 000 м, пыталась снова вернуться в спорт, когда на отборочных соревнованиях в Атланте в 1996 г. ее обвинили в приеме допинга — вещество попало в организм при употреблении тестостерона. После всевозможных обсуждений ассоциация (с 2001 г. официально именуемая Международной ассоциацией легкоатлетических федераций) вынесла решение: Слэни «была виновна в злоупотреблениях, связанных с приемом допинга», которое по сути дела поставило крест на ее спортивной карьере. Согласно некоторым свидетельским показаниям в деле Слэни, «относительное число ложно положительных заключений» применительно к анализу мочи спортсменки могло доходить до 1%. Видимо, поэтому многие легко согласились со следующим: вероятность вины спортсменки равна 99%. Однако мы уже убедились в том, что это неверно. Предположим, анализы сдали 1 000 спортсменов, 1 из 10 был признан виновным, а результаты анализа, выданные признанному виновным спортсмену, представляли собой 50% вероятность злоупотребления допингом. Далее из каждой 1 000 проверенных спортсменов 100 оказались бы виновными, а результаты анализов указали бы на 50 из этих 100. Тем временем из 900 невиновных спортсменов по результатам анализов выделились бы 9 человек. Таким образом, в действительности анализы на выявление допинга означали вовсе не то, что вероятность вины спортсменки равнялась 99%, скорее всего, цифра была: 50/ 59= 84,7%. Другими словами, если иметь в виду свидетельства, у вас должна быть такая же степень уверенности в том, что Слэни виновна, как и в том, что если она подбросит кость, число 1 не выпадет. Это, конечно же, не исключает разумные основания для сомнения, но важно вот что: соответствующие заключения, основанные на масштабной проверке (90 000 спортсменов ежегодно сдают мочу на анализы), равносильны обвинению большого числа невиновных спортсменов {110} 110 Donald A. Barry and Lee Ann Chastain, «Inferences About Testosterone Abuse Among Athletes», Chance 17, no. 2 (2004): 5–8.
.
Читать дальше
Конец ознакомительного отрывка
Купить книгу