Очевидно, что многие детали байесовской теории довольно сложны. Но как я уже говорил, во время анализа задачи про двух дочерей я использовал новые данные для «урезания» пространства элементарных событий и соответственной выверки вероятностей. В задаче с двумя дочерьми пространство элементарных событий изначально было таким: (мальчик, мальчик), (мальчик, девочка), (девочка, мальчик), (девочка, девочка), однако оно сокращается до следующих параметров: (мальчик, девочка), (девочка, мальчик), (девочка, девочка), если вы узнаете, что один из детей — девочка, что шансы на семью из двух девочек составляют 1 из 3. Попробуем применить эту несложную стратегию и посмотрим, что выйдет при условии, если вам станет известно следующее: один из детей — девочка по имени Флорида.
В задаче про девочку по имени Флорида нас интересует помимо пола детей еще и имя, поскольку речь о девочках. Наше первоначальное пространство элементарных событий должно включать в себя все вероятности, поэтому список содержит и пол, и имя. Обозначим девочку по имени Флорида как «девочка Ф», а девочку по имени не Флорида как «девочка не Ф». Обозначим пространство элементарных событий: (мальчик, мальчик), (мальчик, девочка Ф.), (мальчик, девочка не Ф.), (девочка Ф., мальчик), (девочка не Ф., мальчик), (девочка не Ф., девочка Ф.), (девочка Ф., девочка не Ф.), (девочка не Ф., девочка не Ф.), (девочка Ф., девочка Ф.).
Ну а теперь «урежем». Так как нам известно, что один из детей — девочка по имени Флорида, можно сократить пространство элементарных событий: (мальчик, девочка Ф.), (девочка Ф., мальчик), (девочка не Ф., девочка Ф.), (девочка Ф., девочка Ф.). Теперь видно, чем еще эта задача отличается от задачи про двух дочерей. Поскольку утверждения, что девочку зовут Флорида и девочку зовут не Флорида, нельзя назвать равновероятными, не являются таковыми и все элементы пространства элементарных событий.
В 1935, последнем году, за который Управление социальным обеспечением предоставило статистику в отношении имени, около 1 из 30 000 девочек были наречены именем Флорида {106} 106 U.S. Social Security Administration, «Popular Baby Names: Popular Names by Birth Year; Popularity in 1935», http://www.ssa.gov/cgi-bin/popularnames.cgi.
. Поскольку имя становилось все менее популярным, предположим, что сегодня вероятность появления девочки по имени Флорида равна 1 из 1 млн. Это значит следующее: если нам станет известно, что определенную из двух девочку зовут не Флорида, ничего страшного, однако если мы узнаем, что ее зовут Флорида, можно сказать, что мы попали в точку. Вероятность того, что обеих девочек назовут именем Флорида (даже если мы проигнорируем тот факт, что обычно родители избегают давать детям одинаковые имена), настолько мала, что можно спокойно ею пренебречь. Итак, вот что у нас остается: (мальчик, девочка Ф.), (девочка Ф., мальчик), (девочка не Ф., девочка Ф.), (девочка Ф., девочка не Ф.). Все эти события в весьма хорошем приближении равновозможны.
Поскольку 2 из 4, то есть половина элементов пространства элементарных событий являются семьями с двумя девочками, ответом не может быть 1 из 3 — как это было в задаче с двумя дочерьми, — ответом является 1 из 2. Все дело в дополнительной информации — осведомленности насчет имени девочки.
Если вы по-прежнему теряетесь в догадках, то можно представить себе следующее: в очень-очень большой комнате мы собираем 75 млн семей с двумя детьми, из которых хотя бы один ребенок — девочка. Как нам стало известно из задачи с двумя дочерьми, в комнате окажется около 25 млн семей с двумя девочками и 50 млн семей с одной девочкой (25 млн семей, в которых девочка является старшим ребенком, и столько же семей, в которых девочка является младшим ребенком). Далее «урезаем»: просим остаться в комнате только те семьи, в которых есть девочки по имени Флорида. Поскольку Флорида — 1 имя на 1 млн имен, останутся около 50 из 50 млн семей с одной девочкой. А из 25 млн семей с двумя девочками 50 тоже останутся: 25 потому, что их первый ребенок назван по имени Флорида, другие 25 потому, что их младшая дочь названа Флоридой. В этом примере всех девочек можно представить как лотерейные билеты; в таком случае девочки по имени Флорида станут выигрышными билетами. И хотя семей, в которых один из двух детей — девочка, в два раза больше, чем семей, в которых оба ребенка — девочки, семьи с двумя девочками обладают двумя лотерейными билетами, поэтому среди выигравших будет примерно одинаковое соотношение семей с одной девочкой и семей с двумя девочками.
В теории я расписал задачу про девочку по имени Флорида уж очень подробно, до такой степени, что иногда из-за этого моего пристрастия к деталям меня не приглашают на свои дружеские посиделки соседи. Но я поступил так не потому, что ожидал от вас того же самого, что и от своих соседей. Дело в том, что контекст прост, а аналогичный ход рассуждений прояснит многие ситуации, реальные для нашей повседневной жизни. Давайте поговорим о них.
Читать дальше
Конец ознакомительного отрывка
Купить книгу