Карлос Мадрид - Мир математики. т.32. Бабочка и ураган. Теория хаоса и глобальное потепление

Здесь есть возможность читать онлайн «Карлос Мадрид - Мир математики. т.32. Бабочка и ураган. Теория хаоса и глобальное потепление» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2014, ISBN: 2014, Издательство: «Де Агостини», Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

  • Название:
    Мир математики. т.32. Бабочка и ураган. Теория хаоса и глобальное потепление
  • Автор:
  • Издательство:
    «Де Агостини»
  • Жанр:
  • Год:
    2014
  • Город:
    Москва
  • ISBN:
    978-5-9774-0682-6; 978-5-9774-0727-4 (т.32)
  • Рейтинг книги:
    3 / 5. Голосов: 1
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Мир математики. т.32. Бабочка и ураган. Теория хаоса и глобальное потепление: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Мир математики. т.32. Бабочка и ураган. Теория хаоса и глобальное потепление»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Хаос буквально окружает нас. Солнечная система, популяции животных, атмосферные вихри, химические реакции, сигналы головного мозга и финансовые рынки — вот лишь некоторые примеры хаотических систем. Но по-настоящему удивительно то, что хаотическими могут быть простые системы, например двойной маятник. Очередной том из серии «Мир математики» рассказывает о хаосе, то есть о беспорядочном и непредсказуемом поведении некоторых динамических систем, а также о связи теории хаоса с глобальным изменением климата. Эта книга наверняка поможет читателю почувствовать очарование хаоса.

Мир математики. т.32. Бабочка и ураган. Теория хаоса и глобальное потепление — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Мир математики. т.32. Бабочка и ураган. Теория хаоса и глобальное потепление», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Какое значение для динамики имеет фрактальная геометрия аттрактора? Можно предположить, что никакого, но это не так. Пуанкаре, Смэйл и Лоренц учат, что в основе любой динамики всегда лежит геометрия.

В классических аттракторах (фиксированных точках и предельных циклах — еще не так давно другие аттракторы были неизвестны) соседние орбиты всегда располагаются близко друг к другу, небольшие ошибки, как и предполагал Лаплас, заключены в определенных границах, таким образом, можно делать долгосрочные прогнозы. Если говорить о странных аттракторах, присущих хаотическим системам, то все обстоит иначе: две орбиты с близкими начальными условиями располагаются близко друг к другу лишь на коротком промежутке времени, после чего очень быстро отдаляются. Поведение соседних траекторий в странном аттракторе можно проиллюстрировать следующим экспериментом: если представить, что они действуют на маленькую каплю красящего вещества в жидкости, то капля постепенно примет форму очень длинной и тонкой нити, словно пронизывающей весь аттрактор.

Даже если точки, отмеченные красящим веществом, изначально будут находиться очень близко друг к другу, в конечном итоге они окажутся в произвольных частях аттрактора. Прогнозирование финального состояния любой из этих точек при сколь угодно малой ошибке измерения невозможно — в зависимости от допущенной ошибки финальные состояния точек могут располагаться в любой части странного аттрактора. Хаос перемешивает орбиты подобно тому, как пекарь замешивает тесто. Поведение орбит геометрически описывается посредством операций растяжения и складывания. Орбиты должны растягиваться, при этом будут возрастать ошибки (эффект бабочки), а также складываться и постепенно сплетаться по мере приближения к аттрактору (эффект карточной колоды). Растягивание увеличивает неопределенность, при складывании изначально далекие друг от друга траектории сближаются, а информация об исходном состоянии системы уничтожается. Траектории смешиваются, как смешиваются карты в колоде в руках умелого игрока. Так как операции растяжения и складывания повторяются бесконечное число раз, в аттракторах хаотических систем должно наблюдаться множество сгибов внутри каждого сгиба. Именно поэтому с геометрической точки зрения хаотические аттракторы намного сложнее классических. По мере увеличения масштаба хаотические аттракторы раскрывают всё новые и новые детали и проявляют свое самоподобие: структура хаотических аттракторов на микроуровне столь же сложна, как и на макроуровне. Одним словом, хаотические аттракторы — это фракталы.

Несколько примеров хаоса

Мы увидели, что существуют математические системы, обладающие хаотической динамикой. Но каково их практическое значение? Что такое хаос: правило или исключение?

Хаос вездесущ и проявляется повсеместно: и при движении небесных тел (задача трех тел), и при колебаниях двойных маятников, в потоках на грани турбулентности (поток Рэлея — Бенара), в некоторых химических реакциях (реакция Белоусова — Жаботинского), в определенных биологических популяциях и так далее. Открытие повсеместного присутствия хаоса стало третьей великой революцией в науке за последние 100 лет, после открытия теории относительности и квантовой механики.

Достойный упоминания пример хаотического движения в Солнечной системе — движение Гипериона, спутника Сатурна, по форме напоминающего картофелину, который, как может показаться, совершает случайные колебания. Гиперион движется вокруг Сатурна по орбите правильной формы, однако вращается вокруг себя совершенно беспорядочно: в результате быстрого хаотического движения он переворачивается каждые 6 часов и при вращении вокруг своей оси в буквальном смысле подскакивает.

* * *

МИТЧЕЛЛ ФЕЙГЕНБАУМ В ПОИСКАХ ХАОСА

Митчелл Фейгенбаум(род. 1944) — специалист по математической физике, первый, кто начал изучать хаос с помощью компьютеров. В 1975 году методом проб и ошибок он обнаружил число, которое сегодня называется постоянной Фейгенбаума и характеризует переход от периодического движения к хаотическому. Мы уже наблюдали это любопытное явление, когда говорили о логистическом отображении: по мере того как мы постепенно изменяли значение параметра к, периоды орбит удваивались. На смену орбитам с периодом 1 приходили орбиты с периодом 2,4,8,16,32 и так далее, после чего, при превышении критического значения к, равного 3,569945…, наступал хаос.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Мир математики. т.32. Бабочка и ураган. Теория хаоса и глобальное потепление»

Представляем Вашему вниманию похожие книги на «Мир математики. т.32. Бабочка и ураган. Теория хаоса и глобальное потепление» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Яна Дубинянская - Глобальное потепление
Яна Дубинянская
Отзывы о книге «Мир математики. т.32. Бабочка и ураган. Теория хаоса и глобальное потепление»

Обсуждение, отзывы о книге «Мир математики. т.32. Бабочка и ураган. Теория хаоса и глобальное потепление» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x