Гносеологические выводы из теоремы Гёделя нужно делать с большой осторожностью. То, на что наталкивает нас в философском плане эта теорема, высказано Э. Нагелем и Дж. Ньюменом в следующей форме: «Заключения, к которым пришел Гёдель, порождают, естественно, вопрос, можно ли построить вычислительную машину, сравнимую по своим «творческим» математическим возможностям с человеческим мозгом. Современные вычислительные машины обладают некоторым точно фиксированным запасом команд, которые умеют выполнять их элементы и блоки; команды соответствуют фиксированным правилам вывода некоторой формализованной аксиоматической процедуры. Таким образом, машина решает задачу, шаг за шагом выполняя одну из «встроенных» в нее заранее команд. Однако, как видно из гёделевской теоремы о неполноте, уже в элементарной арифметике натуральных чисел возникает бесчисленное множество проблем, выходящих за пределы возможностей любой конкретной аксиоматической системы, а значит, и недоступных для таких машин, сколь бы остроумными и сложными ни были их конструкции и с какой бы громадной скоростью ни проделывали они свои операции. Для каждой конкретной задачи в принципе можно построить машину, которой эта задача была бы под силу, но нельзя создать машину, пригодную для решения любой задачи. Правда, и возможности человеческого мозга могут оказаться ограниченными, так что и человек тогда сможет решить не любую задачу. Но даже если это так, структурные и функциональные возможности человеческого мозга пока еще намного больше по сравнению с возможностями самых изощренных из мыслимых пока машин... Единственный непреложный вывод, который мы можем сделать из гёделевской теоремы о неполноте, состоит в том, что природа и возможности человеческого разума неизмеримо тоньше и богаче любой из известных пока машин» [7].
Действительно, электронная вычислительная машина есть универсальный инструмент вычисления, о чем пойдет речь ниже. Конечно, в самой схеме ЭВМ вовсе не заложен аксиоматически-дедуктивный метод получения теорем. Но машину в принципе всегда можно «научить» выводить теоремы с помощью заданных правил вывода из заданных аксиом (правда, соответствующие программы могут оказаться очень сложными). В результате машина «овладевает» дедуктивным методом доказательства теорем и, естественно, оказывается подвластной ограничениям, которые налагают на этот процесс положения Гёделя. Но эти же самые ограничения распространяются ина человека, если он работает строго по дедуктивному методу [8].
Впрочем, ограничения, вытекающие из результатов Гёделя, относятся не к дедуктивному методу вообще, а к таким дедуктивным системам, которые содержат теорию натуральных чисел и в которых доказательства представляют собой эффективно распознаваемые (за конечное число шагов) объекты. Но как показало последующее развитие математической логики, проблему непротиворечивости и другие проблемы, касающиеся формальных систем, можно исследовать методами, выходящими за пределы подобного финитизма, но представляющимися достаточно надежными. На этом пути становится возможным, например, доказательство непротиворечивости классической формальной арифметики [9].
Результаты Гёделя, во всяком случае, раскрывают важную особенность определенного аппарата, служащего знанию с большой эффективностью, поэтому часто принимавшегося за аппарат абсолютный и окончательный, аппарата формальной выводимости. Лишая аксиоматически-дедуктивный метод (коль скоро он пользуется лишь средствами строго финитного характера) статуса абсолютного, они разрушают его гипнотическое влияние на математиков и логиков и заставляют их не отождествлять более этот метод с дедуктивным методом вообще, искать новые способы построений, ведущих к познанию истины. В этом заряде антидогматизма заключена большая философ. екая ценность теоремы о неполноте. Она заставляет размышлять над тем, что такое знаковое моделирование реальности, что такое строгая теория и сколь разнообразными могут быть ее разновидности»
7. ЧТО ТАКОЕ «МОЖНО ВЫЧИСЛИТЬ»?
Блестящее исследование Гёделя оказалось возможным благодаря тому, что математический материал, относящийся к логике и теория вывода, достиг уже «критической массы». В логике и основаниях математики образовался солидный багаж конкретных достижений. Стала известной специалистам концепция формализованной арифметики Фреге. Была сформулирована формальная аксиоматическая система теории множеств Цермело—Франкеля. Вышли в свет Principia Mathematica. В свете успехов алгебры новую оценку получили работы Буля. Манифесты Брауэра привели к углубленному анализу классической логики и впервые в истории поставили вопрос о ее пересмотре. Наконец, была провозглашена программа Гильберта, которая хотя и оказалась невыполнимой в центральном пункте, придала исследованиям новый дух и поставила перед ними новые задачи.
Читать дальше