Что же представляют собой акции, позволяющие строить из одних рекурсивных функций другие, вообще говоря, более сложные рекурсивные функции?
Подстановка есть не что иное, как вычисление, разбитое на два этапа: сначала вычисляются значения всех «внутренних» функций, а потом — значение «внешней» функции при аргументах, равных полученным на предыдущем этапе числам. Это — акт суперпозиции, последовательного выполнения однотипных операций. Например, суперпозиция функций I 3i и S (где S — внешняя функция) порождает функцию от трех аргументов: f(х1, х2, х3) = S (I 3i (х1, х2, х3)); суперпозиция функций S, I 11, N 1и I 31 (внешняя функция) порождает одноместную функцию q(х) = I 31 (S(х), I 11(х), N 1(х)) и т. д. Самый придирчивый критик не заподозрит в подобных процедурах присутствия чего-либо неясного.
Вычисление по схеме примитивной рекурсии тоже не вызывает недоверия с точки зрения своей четкости и общепонятности. Это мы уже видели на примерах вычисления значения функции «усеченное вычитание», определенной рекурсивно (см. с. 127) [4]. Собственно говоря, мы очень часто пользуемся методом построения какой-то последовательности, формируя каждый ее член по предыдущим членам. В данной схеме следует обратить внимание на то, что вычисление каждого последующего значения нуждается в знании только одного, непосредственно предыдущего, значения. Это, конечно, простейший вариант подобного типа вычислений. Но тем не менее при вычислении по схеме рекурсии значения некоторой функции для какого-то значения ее аргумента (например, для числа 137) приходится на промежуточных фазах вычисления находить значения функции для всех предыдущих значений аргумента: 0, 1, 2, ..., 136, хотя каждый раз все значения, кроме самого последнего, мы можем забывать, стирать с доски и т. д.
Акция, соответствующая четвертому пункту (мю-операция), иначе называется операцией взятия наименьшего числа. Ее включили в определение рекурсивных функций, так сказать, неохотно, под давлением суровой необходимости (в первоначальном определении у Гёделя мю-операции не было), поскольку без нее, как выяснилось, не могут быть получены некоторые функции, играющие в математике важную роль. Как мы отметили выше, функции, в которых участвуют только подстановка и рекурсия, называют примитивно рекурсивными, особо выделяя тем самым мю-операцию. Каков же познавательный статус этой операции? Чем существенным отличается она от подстановки и рекурсии?
Посмотрим сначала, как конкретно функционирует мю-операция. Пусть надо задать способ нахождения наименьшего числа у, для которого выполняется некое условие g°(x1, x2, y) = 0, имеющее вид 100 ∸ х1•х y 2= 0 (напомним, что это равенство равносильно неравенству х1 • х y 2>> 100). Это означает, что над функцией g° (х1, х2, у) надо произвести мю-операцию — определить функцию f° (х1,x2) = μy(g° (x1, x2, y) = 0) = μy(100 ∸ x1 • х y 2= 0).
Сделать это нетрудно, так как функция g° задана, и мы для каждого набора значений ее аргументов х1, х2 можем установить (путем перебора, начинающегося с нуля) то наименьшее значение ее аргумента у, при котором g°(х1, х2, у) = 0. В самом деле, пусть значения аргументов х1, и x2 например, таковы: х1 = 3, х2 = 2. Тогда для вычисления f° (3,2,) надо поступить следующим образом.
1. Положим y = 0; вычислим g°(3, 2, 0). Получим:
100 ∸ 3 • 2° = 100 ∸ 3 • 1 = 100 ∸ 3 = 97. Условие не выполнено, поэтому сделаем следующий шаг, перейдем к значению y = 1.
2. Положим y = 1; вычислим g°(3, 2, 1). Получим:
100 ∸ 3 • 21 = 100 ∸ 3 • 2 = 100 ∸ 6 = 94. Требуемое условие не выполнено, так что возьмем следующее значение у.
3. Положим y = 2; вычислим g° (3, 2, 2). Получим:
100 - 3 • 22 = 100 ∸ 3 • 4 = 100 ∸ 12 = 88. Условие не выполнено. Перейдем к следующему значению у,
4. Положим y = 3; вычислим g° (3, 2, 3). Получим:
100 ∸ 3 • 23 = 100 ∸ 3 • 8 = 100 ∸ 24 = 76. Требуемое условие не выполнено; берем следующее значение у.
5. Положим y = 4; вычислим g° (3, 2, 4). Получим:
100 ∸ 3 • 24 = 100 - 3 • 16 = 100 - 48 = 52. Требуемое условие не выполнено; сделаем еще один шаг.
6. Положим y = 5; вычислим g° (3, 2, 5). Получим:
100 ∸ 3 • 25 = 100 ∸ 3 • 32 = 100 ∸ 96 = 4. Требуемое условие не выполнено, и мы возьмем на единицу большее значение у.
7. Положим у = 6; вычислим g° (3, 2, 6). Получим:
100 ∸ 3 • 26 = 100 ∸ 3 • 64 = 100 ∸ 192 = 0. Условие на этот раз выполнено, поэтому в качестве значения функции f° берется число 6—мы пишем: f° (3, 2) = μy(g° (3, 2, 6) = 0) = 6.
Таким же образом, конечно, можно вычислить значение функции f° для любых значений двух ее аргументов.
Продемонстрированная нами серия однообразных действий показывает те «микроакции», из которых складывается мю-операция. Главная особенность вычислительного процесса данного типа состоит в том, что в качестве его кирпича фигурирует условный оператор, очень важный в кибернетике.
Читать дальше