Борис Бирюков - Жар холодных числ и пафос бесстрастной логики

Здесь есть возможность читать онлайн «Борис Бирюков - Жар холодных числ и пафос бесстрастной логики» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 1977, Издательство: Издательство Знание, Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Жар холодных числ и пафос бесстрастной логики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Жар холодных числ и пафос бесстрастной логики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.

Жар холодных числ и пафос бесстрастной логики — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Жар холодных числ и пафос бесстрастной логики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Дедекиндово построение хорошо раскрывает нам образ мышления, который был присущ нескольким поколениям ученых. Всмотримся пристальнее в ход рассуждений, ведущих к определению действительного числа по Дедекинду. В нем можно усмотреть два пункта, уязвимых для критики.

Пункт первый. Каждый из двух классов сечения мыслится как единый объект, как нечто данное сразу и целиком. Но ведь бесконечное множество нельзя за конечное время перебрать «поэлементно», и его задание - «эффективное» задание, то есть такое, при котором с ним можно «фактически» работать, требует указания метода установления того, что произвольный элемент принадлежит или не принадлежит данному множеству. Иногда такой метод, однако, может приводить к выкладкам, которые нельзя реально осуществить. Именно так обстоит дело в теории Дедекинда, которая предполагает, что для любого сечения мы умеем ответить на вопрос, к какому из двух его классов — левому или правому — принадлежит произвольное рациональное число.

Проиллюстрируем возникающую здесь ситуацию на примере. Как, скажем, может производиться разбиений области рациональных чисел, дающее сечение для числа е . Заметим предварительно, что при вычислении этого числа с наперед заданной точностью пользуются его представлением в виде ряда

1 + 1/1! + 1/2! + 1/3! ...

Предположим что задано рациональное число R1 = 2,7182 и нужно отнести его к левому или правому классу. Для этого мы должны будем вычислить е с точностью, дающей не менее пяти знаков после запятой, что означает взятие в приведенном ряде девяти слагаемых. Суммирование их дает число 2,71828. Сравнивая R1 с этим числом, мы приходим к заключению, что R1 принадлежит к левому классу, поскольку к этому классу принадлежит любое конечное приближений числа е , найденное с помощью приведенного выше ряда (оно всегда меньше e , так как при прибавлении новых членов ряда мы только увеличиваем сумму). Легко сообразить, что если проверяемые числа будут достаточно "длинными"), фактическое осуществление подобной проверки станет невозможным не только для человека, но и для ЭВМ. Но это еще не все. Данный пример показывает, что для «фактического» осуществления разбиения, то есть «точного» выяснения вопроса, что же представляет собой сечение для е , нужно «пробежаться по бесконечности» — произвести неограниченно большое число процедур получения все возрастающих сумм указанного ряда.

Пункт, второй. Если мы и построим сечения для каких-то иррациональных чисел, давая для них правила отнесения к соответствующему (левому или правому) классу любого рационального числа, то эти сечения далеко не исчерпают всех иррациональных чисел. По существу, сечения можно дать только для ничтожной доли всех действительных чисел. Но тогда спрашивается: откуда же в нас возникает убеждение, что действительных чисел неизмеримо больше, чем осуществленных сечений? Если разобраться в этом, мы придем к выводу, что оно появляется как результат специфического акта воображения: перед нашим внутренним взором пробегают, вереницы бесконечных десятичных дробей Вейерштрасса, с каждой из которых связано некое сечение.

Эти уязвимые для критики пункты подрывают теорию сечений — мы убеждаемся, что с нею, как и без нее, от бесконечностей никуда не уйдешь. Но она представляла собой важное методологическое достижение, учитывающее новые элементы научного видения математиков. Философской основой этого видения был так называемый математический платонизм.

В своей знаменитой «теории идей» Платон утверждал, что чувственно воспринимаемые объекты есть лишь бледные копии идей («эйдосов»), существующих в неком идеальном мире. Эйдосы существуют там более реально, чем существуют в материальном мире обычные вещи, поскольку Зычные вещи со временем разрушаются и исчезают, а идеи вечны и поскольку вещи имеют дефекты и изъяны, а идеи совершенны. Исходя из этого основного положения, Платон обсуждал свойства идей и их отношение к вещам, пользуясь для этого формальной логикой естественного языка.

Было бы абсурдно утверждать, что математики XIX века сплошь увлекались Платоном. На деле у них были самые различные философские взгляды, но в своем отношении к математическим объектам почти все они стояла на точке зрения стихийного платонизма.

Уклон в сторону платонизма создавала сама тогдашняя математика. Об этом хорошо сказал Бертран Рассеяв «Я полагаю, что математика является главным источников веры в вечную и точную истину, а также сверхчувственный интеллигибельный мир. Геометрия имеет дело с точными окружностями, но ни один чувственный объект не является точно круглым; и как бы мы тщательно ни применяли наш циркуль, окружности всегда будут до некоторой степени несовершенными и неправильными. Это наталкивает на предположение, что всякое точное размышление имеет дело с идеалом, противостоящим чувственным объектам. Естественно сделать еще один шаг вперед и доказывать, что мысль благороднее чувства, а объекты мысли более реальны, чем объекты чувственного восприятия. Чистая математика также льет воду на мельницу мистических доктрин об отношении времени к вечности, ибо математические объекты, например числа (если они вообще реальны), являются вечными и вневременными. А подобные вечные объекты могут в свою очередь быть истолкованы как мысли бога. Отсюда платоновская доктрина, согласно которой бог является геометром, а также представление сэра Джемса Джинса о том, что бог предается арифметическим занятиям» [10]. Здесь обрисован один из источников разбираемой философской установки. Дальнейшие мы укажем ниже.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Жар холодных числ и пафос бесстрастной логики»

Представляем Вашему вниманию похожие книги на «Жар холодных числ и пафос бесстрастной логики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Жар холодных числ и пафос бесстрастной логики»

Обсуждение, отзывы о книге «Жар холодных числ и пафос бесстрастной логики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x