Борис Бирюков - Жар холодных числ и пафос бесстрастной логики

Здесь есть возможность читать онлайн «Борис Бирюков - Жар холодных числ и пафос бесстрастной логики» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 1977, Издательство: Издательство Знание, Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Жар холодных числ и пафос бесстрастной логики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Жар холодных числ и пафос бесстрастной логики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.

Жар холодных числ и пафос бесстрастной логики — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Жар холодных числ и пафос бесстрастной логики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Итак, действительных чисел в каком-то смысле больше, чем натуральных: по какому бы закону мы ни нумеровали натуральными числами множество всех действительных чисел, всегда найдется хотя бы одно действительное число (на самом деле даже бесчисленное множество чисел), которое будет «забыто», оно не только не получит индекса достаточно быстро, но даже не будет поставлено «на очередь». Конечно, можно изменить весь принцип нумерации и включить это число в систему раздачи индексов, но тогда обязательно будет «обижено» какое-нибудь другое число.

Установив поразительный факт неодинаковой «мощности» бесконечных множеств. Кантор открыл для математики новый мир. Вскоре выяснилось, что множество действительных чисел (континуум) — далеко не самое мощное: его превосходит по мощности, например, множество всех действительных функций одной переменной, заданных на единичном отрезке. Вообще, Кантор показал, что по множеству данной мощности всегда можно построить еще более мощное множество—для этого достаточно взять множество всех подмножеств данного множества [16].

В письмах и статьях Кантора, в комментариях к его математическим работам не раз встречаются фразы, из которых можно заключить, что Кантор возводил свое Mengenlehre как бы вопреки собственной воле, на каждом этапе работы изумляясь полученному результату, как будто противоречащему интуиции и здравому смыслу. Действительно мышление в терминах множеств, обретя дарованный ему Кантором четкий аппарат, стало «теоретико-множественным» мышлением и отныне должно было развиваться уже независимо от психологических факторов, как развивается всякая математическая теория. Хотели этого иди не хотели математики, но в новой теории сами собой возникали уходящие в неоглядную даль вереницы множеств множеств множеств, множеств множеств множеств...

Конечно, с самого начала этой «вакханалии множеств были математики, которые смотрели на нее неодобрительно. Таким был, например, Леопольд Кронекер (1823—1891). Но доказательства Кантора были безупречными по всем принятым тогда стандартам. Поэтому самая сильная форма протеста тогда была не убедительнее восклицания самого Кантора: «Вижу, но не верю!»

Теоретико-множественная установка нашла свое приложение и в логике. Она воплотилась в трудах выдающегося логика Готлоба Фреге (2848—1925), профессора математика Иенского университета. Беспощадный критик математических работ, содержащих хотя бы мелкие логические дефекты, человек пуританского поведения и нелегкого для окружающих характера, фанатически преданный науке труженик, он фактически был создателем современного аксиоматико-дедуктивного метода построения математических теорий. Этот метод был разработан им уже в работе 1879 года — с этого года обычно датируют начало исследований по логическим основаниям математики, носившей название «Запись в понятиях», а затем развернуто в двухтомном труде (при своем появлении почти никем не замеченном) «Основные законы арифметики» (1893, 1902). В первом томе этого труда в неявной форме содержалось широко известное теперь формально-логическое противоречие.. Узнав об этом противоречии (как это произошло, мы расскажем ниже), Фреге так же резко осудил труд своей жизни, как осуждал слабые работы других. Мы дадим краткую характеристику достижений Фреге в области формализации логики, а затем расскажем о трактовке им понятия натурального числа — основного понятия арифметики, да и, по-видимому, математики вообще [17].

В предыдущей главе мы привели пример формальной системы — некоторого исчисления равенств, интерпретации которого содержали булевы алгебры. Обсудим теперь вопрос о формализации математических теорий вообще. При полной формализации теории никаких «интуитивно понятных» действий над объектом теории не допускается: все должно быть заложено в ее синтаксисе (алфавите, правилах образования формул) и средствах дедукции — постулатах (включая правила введения новых знаков для сокращения записи комбинаций основных знаков [18]).

В общем случае полностью формализованная математическая теория имеет два этажа — формализованную логику и надстроенную над ней специально математическую часть (в случае формальной арифметики этой частью является теория натуральных чисел). Логическая часть обычно строится не как исчисление равенств, а как пропозициональное исчисление — исчисление высказываний [19], расширяемое в исчисление предикатов.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Жар холодных числ и пафос бесстрастной логики»

Представляем Вашему вниманию похожие книги на «Жар холодных числ и пафос бесстрастной логики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Жар холодных числ и пафос бесстрастной логики»

Обсуждение, отзывы о книге «Жар холодных числ и пафос бесстрастной логики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x