Эрнст Нагель - Teopeма Гёделя

Здесь есть возможность читать онлайн «Эрнст Нагель - Teopeма Гёделя» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2010, ISBN: 2010, Издательство: КРАСАНД, Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Teopeма Гёделя: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Teopeма Гёделя»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Нагель Эрнест, Ньюмен Джеймс Рой. Теорема Гёделя: Пер. с англ. Изд. 2-е, испр. — М.: КРАСАНД, 2010. — 120 с. (НАУКУ — ВСЕМ! Шедевры научно-популярной литературы.) Вниманию читателя предлагается книга известного американского логика Э. Нагеля и опытного популяризатора науки Дж. Р. Ньюмена, посвященная теореме Гёделя о неполноте. Эта теорема была изложена в небольшой статье К. Гёделя, которая впоследствии сыграла решающую роль в истории логики и математики. Авторы настоящей книги, не пытаясь дать общий очерк идей и методов математической логики, строят изложение вокруг центральных, с их точки зрения, проблем этой науки — проблем непротиворечивости и полноты. Доказательство того факта, что для достаточно богатых математических теорий требования эти несовместимы, и есть то поразительное открытие Гёделя, которому посвящена книга. Не требуя от читателя по существу никаких предварительных познаний, авторы с успехом объясняют ему сущность одной из самых замечательных и глубоких теорем математики и логики.
Для специалистов по математической логике, студентов и аспирантов, а также всех заинтересованных читателей.

Teopeма Гёделя — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Teopeма Гёделя», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

5.Мы подошли теперь к месту, которое можно назвать кодой это поразительной интеллектуальной симфонии — творения Гёделя. Описанные выше шаги позволили обосновать метаматематическое утверждение «если арифметика непротиворечива, то она неполна». Но Гёделю удалось доказать и нечто большее, а именно, что само условное метаматематическое утверждение (именно все утверждение в целом ) изображается в формализованной арифметике некоторой доказуемой формулой.

Построить такую замечательную формулу нам будет теперь совсем нетрудно. Мы уже говорили выше (в разделе 5), что метаматематическое высказывание «арифметика непротиворечива» эквивалентно высказыванию «существует хода бы одна недоказуемая арифметическая формула». Последнее же высказывание, очевидно, представляемся в формальном (арифметическом) исчислении следующей формулой:

Ǝ yx ~ Dem( x, y ). (А)

Формула эта, если выразить ее словесно, гласит: «существует по крайней мере одно натуральное число у, такое что для любого натурального x числа x и у не находятся между собой в отношении Dem». Если же интерпретировать формулу как метаматематическое высказывание, то мы получим: «существует по крайней мере одна арифметическая формула, для которой никакая последовательность формул не является ее доказательством». Таким образом, формула А как раз и представляет посылку метаматематического утверждения «Если арифметика непротиворечива, то она неполна». В то же время заключение утверждения «Она (т. е. арифметика) неполна» непосредственно вытекает из высказывания «имеется истинное арифметическое утверждение, не являющееся формально доказуемым в арифметике»; последнее же высказывание представляется в арифметическом исчислении посредством нашей старой знакомой — формулы G. Итак, условное метаматематическое высказывание «Если арифметика непротиворечива, то она неполна» представимо формулой

Ǝ уx ~ Dem( x, y ) ﬤ ∀ x ~ Dem( x , sub( n , 13, n )),

которую можно было бы теперь сокращенно обозначить через « AG ». Именно для этой формулы можно установить ее формальную доказуемость, но мы не будем здесь пытаться это делать.

Покажем лишь, что формула А недоказуема. Допустим противное. Тогда, поскольку формула AG доказуема, modus ponens позволяет нам заключить, что доказуемой должна бы быть и формула G. Но если наше исчисление непротиворечиво, G формально неразрешима, а потому, конечно, недоказуема. Таким образом, если арифметика непротиворечива, то формула А недоказуема.

Что это означает? Формула А представляет метаматематическое высказывание «Арифметика непротиворечива». Значит, если бы высказывание можно было обосновать каким нибудь рассуждением, отобразимым в последовательность формул, являющуюся доказательством в арифметическом исчислении, сама формула А была бы доказуема. Но это, как мы только что видели, невозможно, если во всяком случае считать, что арифметика непротиворечива. Мы дошли, наконец, до заключительного аккорда: нам приходится согласиться, что если арифметика непротиворечива, то непротиворечивость ее не может быть установлена никаким метаматематическим рассуждением, допускающим представление в арифметическом формализме

Надо сказать, что этот замечательный результат проведенного Гёделем анализа проблемы не исключает, однако, возможности метаматематического доказательства непротиворечивости арифметики. Из него следует лишь, что невозможно такое доказательство непротиворечивости, которое могло бы быть отображено (переведено) в формальное доказательство, проводимое внутри самой формальной арифметики.

Положение здесь очень напоминает то, которое сложилось в геометрии в связи о доказательством невозможности деления произвольного угла на три части о помощью циркуля и линейки. Доказательство это отнюдь не исключает возможности произвести искомое деление при помощи каких-либо более сильных средств. И действительно, его можно осуществить, добавив к циркулю и линейке ещё постоянный эталон длины.

На самом деле метаматематические доказательства непротиворечивости арифметики были получены; первым такое доказательство осуществил представитель школы Гильберта Герхард Генцен в 1936 г., а впоследствии было получено еще несколько доказательств того же результата. Доказательства эти имеют большую логическую ценность, заключающуюся хотя бы уже в том, что они продемонстрировали существенно новые формы метаматематических рассуждений и конструкций, а также в том, что благодаря им выяснилось, какие новые виды правил вывода надо допустить, если мы хотим установить непротиворечивость арифметики. Но все подобные доказательства уже не могут быть воспроизведены в рамках арифметического исчисления, и, поскольку все новые правила вывода уже не являются финитистскими, доказательства непротиворечивости, полученные с их помощью, никоим образом нельзя считать достижением цели, поставленной в гильбертовской программе в ее первоначальной формулировке.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Teopeма Гёделя»

Представляем Вашему вниманию похожие книги на «Teopeма Гёделя» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Teopeма Гёделя»

Обсуждение, отзывы о книге «Teopeма Гёделя» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x