Рауль Ибаньес - Мир математики - т.6 Четвертое измерение. Является ли наш мир тенью другой Вселенной?

Здесь есть возможность читать онлайн «Рауль Ибаньес - Мир математики - т.6 Четвертое измерение. Является ли наш мир тенью другой Вселенной?» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2014, ISBN: 2014, Издательство: «Де Агостини», Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

  • Название:
    Мир математики: т.6 Четвертое измерение. Является ли наш мир тенью другой Вселенной?
  • Автор:
  • Издательство:
    «Де Агостини»
  • Жанр:
  • Год:
    2014
  • Город:
    Москва
  • ISBN:
    978-5-9774-0631-4
  • Рейтинг книги:
    5 / 5. Голосов: 1
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Мир математики: т.6 Четвертое измерение. Является ли наш мир тенью другой Вселенной?: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Мир математики: т.6 Четвертое измерение. Является ли наш мир тенью другой Вселенной?»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Нечасто математические теории опускаются с высоких научных сфер до уровня массовой культуры. Тем не менее на рубеже XIX и XX веков люди были увлечены возможностью существования других измерений за пределами нашей трехмерной реальности. Благодаря ученым, которые использовали четвертое измерение для описания Вселенной, эта идея захватила воображение масс. Вопросом многомерности нашего мира интересовались философы, богословы, мистики, писатели и художники. Попробуем и мы проанализировать исследования математиков и порассуждать о том, насколько реально существование других измерений.

Мир математики: т.6 Четвертое измерение. Является ли наш мир тенью другой Вселенной? — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Мир математики: т.6 Четвертое измерение. Является ли наш мир тенью другой Вселенной?», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Ключевым моментом в решении этого вопроса стала работа итальянского математика Джироламо Саккери (1667–1733). Вместо того чтобы вывести пятый постулат из предыдущих, он использовал метод от противного. Доказательство основывалось на четырехугольнике с двумя прямыми углами А и D и равными сторонами АВ и CD. Для других равных углов В и С существует три возможности:

1) В = С = 90° (гипотеза прямых углов, или евклидова гипотеза);

2) В = С > 90° (гипотеза тупых углов);

3) В = С < 90° (гипотеза острых углов).

Четырехугольник Саккерис двумя прямыми углами Гипотеза тупых углов быстро - фото 23

Четырехугольник Саккерис двумя прямыми углами.

Гипотеза тупых углов быстро отбрасывается, о гипотезе острых углов Саккери сказал следующее: «Гипотеза острых углов абсолютно ложна, потому что противна самой природе прямой линии». И Саккери, и немецкий математик Иоганн Генрих Ламберт (1728–1777) получили интересные геометрические результаты, вытекающие именно из гипотезы острых углов.

Лишь в XIX в. Гаусс, Лобачевский и Бойяи окончательно решили эту проблему, хотя немецкий математик Иоганн Карл Фридрих Гаусс не публиковал свои открытия, поскольку они противоречили философским доктринам той эпохи о природе пространства.

Русский математик Николай Иванович Лобачевский был первым, кто обнародовал новую геометрию, отличавшуюся от геометрии Евклида. Лобачевский назвал ее «воображаемой геометрией», и теперь она известна как гиперболическая геометрия. Она соответствует гипотезе острых углов Саккери, по которой через точку вне данной прямой проходит бесконечное количество прямых, параллельных данной.

Лобачевский представил свою работу в 1826 г. на конференции в Казанском университете, где он работал, а затем опубликовал ее в журнале «Казанский вестник» в серии статей под названием «О началах геометрии». Три важнейшие его работы содержат описание новой геометрии: «О началах геометрии» (на русском языке), «Геометрические исследования по теории параллельных линий» (на немецком языке) и его последняя книга «Пангеометрия» (на русском и французском языках).

Математик-любитель и офицер австро-венгерской армии Янош Бойяи (1802–1860) подошел к задаче с несколько иной точки зрения. Он разработал абсолютную геометрическую теорию, используя только первые четыре постулата, и исследовал, зависят ли полученные геометрические результаты от пятого постулата. Его статья была опубликована в 1832 г. в виде приложения к работе его отца, близкого друга Гаусса, математика Фаркаша Бойяи (1775–1856), который также работал над проблемой о параллелях. Он так написал об этом своему сыну: «Ради бога, молю тебя, оставь эту материю. Страшись ее не меньше, нежели чувственных увлечений, потому что и она может лишить тебя всего твоего времени, здоровья, покоя, всего счастья твоей жизни…»

* * *

ИММАНУИЛ КАНТ И ЕВКЛИДОВА ГЕОМЕТРИЯ

После эпохи Возрождения образ Бога начал терять свое значение в области математики и науки в целом. Позже, в XVIII в., роль Бога как архитектора мира еще более поблекла. Говорят, что Наполеон упрекал французского математика Пьера Лапласа (1749–1827) в том, что в его главной работе «Небесная механика» тот не упоминал Творца, на что Лаплас ответил: «Сир, я не нуждался в этой гипотезе».

Но тогда философы задались вопросом, а верны ли сами математические законы природы?

Шотландский философ Дэвид Юм(1711–1776) считал, что наше знание о мире является субъективным, поскольку оно получено через наши органы чувств. Другими словами, никто не может гарантировать существование объективного физического мира, и, следовательно, не имеет смысла говорить о его научных законах.

Со своей стороны, Кант в работе «Критика чистого разума» (1781) утверждал, что пространство и время являются формами восприятия и интуиции, на основании которых ум рассматривает реальность. Так как понятие пространства находится в нашем сознании, оно принимает форму определенных истин, которые Кант называл «априорными синтетическими суждениями», являющимися частью наших врожденных умственных способностей. Геометрия просто следует из них. Евклидова геометрия и трехмерное пространство являются частью этих истин априори.

* * *

И сумма углов треугольника и количество прямых параллельных данной п - фото 24 И сумма углов треугольника и количество прямых параллельных данной прямой - фото 25 И сумма углов треугольника и количество прямых параллельных данной прямой - фото 26 И сумма углов треугольника и количество прямых параллельных данной прямой - фото 27

И сумма углов треугольника, и количество прямых, параллельных данной прямой линии и проходящих через точку вне ее, зависит от типа геометрии: евклидовой, гиперболическойили эллиптической.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Мир математики: т.6 Четвертое измерение. Является ли наш мир тенью другой Вселенной?»

Представляем Вашему вниманию похожие книги на «Мир математики: т.6 Четвертое измерение. Является ли наш мир тенью другой Вселенной?» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Мир математики: т.6 Четвертое измерение. Является ли наш мир тенью другой Вселенной?»

Обсуждение, отзывы о книге «Мир математики: т.6 Четвертое измерение. Является ли наш мир тенью другой Вселенной?» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x