Александр Соловьев - ДИСКРЕТНАЯ МАТЕМАТИКА БЕЗ ФОРМУЛ

Здесь есть возможность читать онлайн «Александр Соловьев - ДИСКРЕТНАЯ МАТЕМАТИКА БЕЗ ФОРМУЛ» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

ДИСКРЕТНАЯ МАТЕМАТИКА БЕЗ ФОРМУЛ: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «ДИСКРЕТНАЯ МАТЕМАТИКА БЕЗ ФОРМУЛ»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

ДИСКРЕТНАЯ МАТЕМАТИКА БЕЗ ФОРМУЛ — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «ДИСКРЕТНАЯ МАТЕМАТИКА БЕЗ ФОРМУЛ», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

6. ТРАНЗИТИВНОСТЬ . Если Иванов «учится в одной группе» с Петровым, а Петров с Сидоровым, то Иванов «учится в одной группе» с Сидоровым. Отношение включения тоже транзитивно. Если группа «включена» в множество студентов университета, а это множество «включено» в множество студентов страны. То множество студентов группы «включено» в множество студентов страны. Можно продолжить эту цепочку включений, прихватив галактику. И вот тут опять подводный камень казуистики!

Если студенческую группу рассматривать как элемент университета – множества, состоящего из групп, а университет элемент высшей школы – множества, состоящего из университетов, то группа не является элементом высшей школы (там элементы университеты). То есть отношение «принадлежности» нетранзитивно. «Вассал моего вассала -…»

Вернемся к функциональному соответствию (то есть к функции). Если это соответствие к тому же еще и всюду-определено, то оно называется ОТОБРАЖЕНИЕМ .

Если отобразить множество студентов в группе, на множество фамилий в группе, То это скорее всего будет ОТОБРАЖЕНИЕ множества студентов НА множество фамилий. То есть сюр'ективное соответствие. Если же отобразить множество студентов группы на множество фамилий студентов университета, то говорят, что имеет место ОТОБРАЖЕНИЕ множества студентов В множество фамилий. То есть в области значений будут и «незадействованные фамилии».

Мы подошли к одному из самых фундаментальных, может потому и неблагозвучных, понятий и теории множеств, и математики вообще, мы подошли к ГОМОМОРФИЗМУ .

Пример. Отобразим множество точек участка земной поверхности на множество точек карты. Сейчас оставим в стороне то, что некое множество точек земной поверхности отобразится в одну точку на карте, в таких случаях неин'ективность – обычное дело. Для нас существенно то что, чем выше точки земной поверхности над уровнем моря, тем в более коричневые точки карты они отображаются.

Таким образом, мы рассматриваем не просто множества элементов. В первом случае здесь между элементами множества существует отношение «выше», а во втором – «коричневее». Где выше в первом – там коричневее во втором. «Выше» и «коричневее» – это отношения заданные на своих множествах.

Отображение земной поверхности НА карту не просто ставит всем элементам одного множества элементы другого. Но, кроме того, если между двумя элементами первого множества существует отношение «выше», то между их образами во втором множестве имеет место отношение «коричневее». Естественно, если точки земной поверхности лежат на одной высоте, то они отобразятся в точки карты с одинаковой коричневостью.

Такое отображение называется ГОМОМОРФНЫМ . Или говорят, что между этими множествами существует ГОМОМОРФИЗМ .

Вернемся к тому, что слово не очень благозвучное, а по американским меркам и громоздкое. Поэтому последнее время все чаше используется более короткий (усеченный) термин – МОРФИЗМ.

Морфизмы играют в математике исключительную роль. Коль скоро математику не без оснований часто отождествляют с математическим моделированием, то приведем афоризм из одной умной философской книжки: ХОРОШАЯ МОДЕЛЬ ВСЕГДА ГОМОМОРФНА .

Афоризм в конце лекции провоцирует размышления. Чего бы и хотелось добиться…

Лекция 5. ОСОБЫЕ ОТНОШЕНИЯ

Каждое конкретное отношение обладает сразу совокупностью свойств. Полезно исследовать группы отношений, у которых совокупности свойств одинаковые.

Прежде всего к таковым относятся отношения ЭКВИВАЛЕНТНОСТИ . Это отношения, которые одновременно обладают свойствами рефлексивности, симметричности и транзитивности. Отношение «равенства» чисел – самый простой пример эквивалентности. Или «учиться в одной студенческой группе».

Интересно, что каждый об'ект эквивалентен сам себе хотя бы потому, что для самого невероятного об'екта, который ни на что не похож, по отношении к самому себе выполняются рефлексивность, симметричность и транзитивность. Обычно же об'екты не столь уникальны и имеют место множества (любят говорить КЛАССЫ ) эквивалентных между собой об'ектов.

Самое важное свойство отношения эквивалентности (то есть свойство отношения, которое само определено с помощью трех вышеупомянутых свойств) покажем на примере. Если взять первозданный хаос, то есть все множество студентов университета, которые болтаются по коридорам, сидят в буфете или в аудиториях, а еще лучше дома или вообще неизвестно где, то отношение «учиться в одной группе» РАЗБИВАЕТ это множество на подмножества-группы. Каждый студент принадлежит какой-то группе и не может принадлежать сразу двум. (В реальной жизни возможны исключения из этих очевидных свойств, но мы по умолчанию рассматриваем лишь нормальных студентов).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «ДИСКРЕТНАЯ МАТЕМАТИКА БЕЗ ФОРМУЛ»

Представляем Вашему вниманию похожие книги на «ДИСКРЕТНАЯ МАТЕМАТИКА БЕЗ ФОРМУЛ» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «ДИСКРЕТНАЯ МАТЕМАТИКА БЕЗ ФОРМУЛ»

Обсуждение, отзывы о книге «ДИСКРЕТНАЯ МАТЕМАТИКА БЕЗ ФОРМУЛ» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x