Хавьер Фресан - Мир математики - m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.

Здесь есть возможность читать онлайн «Хавьер Фресан - Мир математики - m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2014, ISBN: 2014, Издательство: «Де Агостини», Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В 1881 году французский ученый Анри Пуанкаре писал: «Математика — всего лишь история групп». Сегодня мы можем с уверенностью утверждать, что это высказывание справедливо по отношению к разным областям знаний: например, теория групп описывает кристаллы кварца, атомы водорода, гармонию в музыке, системы защиты данных, обеспечивающие безопасность банковских транзакций, и многое другое. Группы повсеместно встречаются не только в математике, но и в природе. Из этой книги читатель узнает об истории сотрудничества (изложенной в форме диалога) двух известных ученых — математика Андре Вейля и антрополога Клода Леви-Стросса. Их исследования объединила теория групп.

Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение. — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

ЛЕВИ-СТРОСС: Рассмотрим оставшийся случай, когда дочери придерживаются той же формулы заключения брака, что и родители, сыновья — обратной, следовательно, р = 1, q = 0. Таким образом, функции f и g будут равны:

f(а, b, с, d) = (а+1, b+1, а + с + d+1, d +1), g (a, b, c, d) = (a+1, b, a+c +1, d );

Функция g будет той же, что и в предыдущем случае. Мы уже знаем, что она является функцией четвертого порядка. Вычислим порядок функции f. Для этого применим ее несколько раз, пока не получим тождественное преобразование. Если я не ошибаюсь, достаточно применить ее дважды:

83

f²(а, b, с, d) = f(а+1, b+1, а+с+d+1, d+1)

= ((а+1)+1, (b+1)+1,(a+1) + (a+c+d+1)+(d+1)+1,(d+1)+1)

= (а, b, с, d),

а также использовать упрощения, которые вы продемонстрировали выше.

Более того, f и g независимы, следовательно, порожденная ими группа изоморфна группе ℤ/2 х ℤ/4. Этого достаточно, чтобы доказать: рассматриваемое племя является несократимым, так как в группе ℤ/2 х ℤ/4 недостаточно элементов восьмого порядка для преобразования 16 разновидностей брака между собой.

ВЕЙЛЬ: Поздравляю вас, господин Леви-Стросс! Вы все поняли! В этом случае также можно показать, что общество является сократимым, применив новый, более прямой метод, который я вам сейчас объясню. Рассмотрим брак вида (а, b, с, d). Согласно нашим расчетам, сыновья от этого брака вступят в брак по правилу (a +1,b +1,a + c + cf +1,cf +1).

Важно заметить, что разность между первой и четвертой координатами равна:

(b+1)-(d+1)=b-d.

Точно такой же будет разность между первой и четвертой координатами в исходной разновидности брака! Математики говорят, что эта величина инвариантна относительно f. Более того, она также инвариантна относительно g, так как в этом случае вторая и четвертая координаты не меняются. Следовательно, композиция f и g позволяет получить только те правила, в которых значение b — d равно исходному. К примеру, начав с (1, 1, 1, 0), мы никогда не сможем получить (1, 0, 1, 0), так как в первом случае разность между второй и четвертой координатами равна 1, во втором — 0.

Это означает, что представители клана D2, которые вступают в брак по правилу (I), принадлежат к иной группе, чем представители клана С2, вступающие в брак по той же формуле. Выполнив некоторые действия, мы сможем определить эти две группы в явном виде:

Первая группа 84 Вторая группа ЛЕВИСТРОСС Любой сказал бы что аборигены - фото 50

Первая группа.

84

Вторая группа ЛЕВИСТРОСС Любой сказал бы что аборигены мурнгин знали теорию - фото 51

Вторая группа.

ЛЕВИ-СТРОСС: Любой сказал бы, что аборигены мурнгин знали теорию групп.

ВЕЙЛЬ: Когда система, которая на первый взгляд кажется невообразимо сложной, путем умелого выбора обозначений превращается в нечто столь простое, как абелева группа, я воспринимаю это как чудо. Я не осмелюсь сказать, что принцип, согласно которому любой мужчина может жениться на дочери брата своей матери, был введен, чтобы доставить удовольствие математикам (это было бы уже слишком), но следует признать, что я до сих пор испытываю особую привязанность к аборигенам мурнгин.

Видя подобные примеры, сложно не согласиться с сонетом Микеланджело, в котором он говорит, что мраморная глыба уже содержит в себе произведение искусства, и задача художника — отсечь все лишнее:

И высочайший гений не прибавит
Единой мысли к тем, что мрамор сам
Таит в избытке,— и лишь это нам
Рука, послушная рассудку, явит [7] 2 Перевод А. М . Эфроса. .

Математик, подобно великому скульптору, высекает свои творения из необычайно твердого и прочного материала. Несовершенства материала столь сильно влияют на конечный результат, что наделяют его некоторого рода объективностью.

85

Глава 5 Под знаком Диофанта

Фурье считал, что главная цель математики есть принесение пользы обществу и объяснение явлений природы; тем не менее такой философ, как вы, должен знать, что единственной целью науки является честь человеческого разума, и с этой точки зрения вопрос о числе так же важен, как и вопрос о системе мира.

Карл Густав Якоб Якоби в письме к Адриену Мари Лежандру

ЛЕВИ-СТРОСС: Помните, как в одной из наших бесед вы пообещали мне подробнее рассказать о задаче из вашей докторской диссертации?

ВЕЙЛЬ: Как я мог забыть об этом! Но в этот раз, если вы позволите, мы применим иной метод. Я написал несколько достаточно подробных заметок; прочитайте их, а затем спросите меня о том, что показалось вам непонятным. Вперед!

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.»

Представляем Вашему вниманию похожие книги на «Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.»

Обсуждение, отзывы о книге «Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x