ЛЕВИ-СТРОСС: Рассмотрим оставшийся случай, когда дочери придерживаются той же формулы заключения брака, что и родители, сыновья — обратной, следовательно, р = 1, q = 0. Таким образом, функции f и g будут равны:
f(а, b, с, d) = (а+1, b+1, а + с + d+1, d +1), g (a, b, c, d) = (a+1, b, a+c +1, d );
Функция g будет той же, что и в предыдущем случае. Мы уже знаем, что она является функцией четвертого порядка. Вычислим порядок функции f. Для этого применим ее несколько раз, пока не получим тождественное преобразование. Если я не ошибаюсь, достаточно применить ее дважды:
83
f²(а, b, с, d) = f(а+1, b+1, а+с+d+1, d+1)
= ((а+1)+1, (b+1)+1,(a+1) + (a+c+d+1)+(d+1)+1,(d+1)+1)
= (а, b, с, d),
а также использовать упрощения, которые вы продемонстрировали выше.
Более того, f и g независимы, следовательно, порожденная ими группа изоморфна группе ℤ/2 х ℤ/4. Этого достаточно, чтобы доказать: рассматриваемое племя является несократимым, так как в группе ℤ/2 х ℤ/4 недостаточно элементов восьмого порядка для преобразования 16 разновидностей брака между собой.
ВЕЙЛЬ: Поздравляю вас, господин Леви-Стросс! Вы все поняли! В этом случае также можно показать, что общество является сократимым, применив новый, более прямой метод, который я вам сейчас объясню. Рассмотрим брак вида (а, b, с, d). Согласно нашим расчетам, сыновья от этого брака вступят в брак по правилу (a +1,b +1,a + c + cf +1,cf +1).
Важно заметить, что разность между первой и четвертой координатами равна:
(b+1)-(d+1)=b-d.
Точно такой же будет разность между первой и четвертой координатами в исходной разновидности брака! Математики говорят, что эта величина инвариантна относительно f. Более того, она также инвариантна относительно g, так как в этом случае вторая и четвертая координаты не меняются. Следовательно, композиция f и g позволяет получить только те правила, в которых значение b — d равно исходному. К примеру, начав с (1, 1, 1, 0), мы никогда не сможем получить (1, 0, 1, 0), так как в первом случае разность между второй и четвертой координатами равна 1, во втором — 0.
Это означает, что представители клана D2, которые вступают в брак по правилу (I), принадлежат к иной группе, чем представители клана С2, вступающие в брак по той же формуле. Выполнив некоторые действия, мы сможем определить эти две группы в явном виде:
Первая группа.
84
Вторая группа.
ЛЕВИ-СТРОСС: Любой сказал бы, что аборигены мурнгин знали теорию групп.
ВЕЙЛЬ: Когда система, которая на первый взгляд кажется невообразимо сложной, путем умелого выбора обозначений превращается в нечто столь простое, как абелева группа, я воспринимаю это как чудо. Я не осмелюсь сказать, что принцип, согласно которому любой мужчина может жениться на дочери брата своей матери, был введен, чтобы доставить удовольствие математикам (это было бы уже слишком), но следует признать, что я до сих пор испытываю особую привязанность к аборигенам мурнгин.
Видя подобные примеры, сложно не согласиться с сонетом Микеланджело, в котором он говорит, что мраморная глыба уже содержит в себе произведение искусства, и задача художника — отсечь все лишнее:
И высочайший гений не прибавит
Единой мысли к тем, что мрамор сам
Таит в избытке,— и лишь это нам
Рука, послушная рассудку, явит [7] 2 Перевод А. М . Эфроса.
.
Математик, подобно великому скульптору, высекает свои творения из необычайно твердого и прочного материала. Несовершенства материала столь сильно влияют на конечный результат, что наделяют его некоторого рода объективностью.
85
Глава 5 Под знаком Диофанта
Фурье считал, что главная цель математики есть принесение пользы обществу и объяснение явлений природы; тем не менее такой философ, как вы, должен знать, что единственной целью науки является честь человеческого разума, и с этой точки зрения вопрос о числе так же важен, как и вопрос о системе мира.
Карл Густав Якоб Якоби в письме к Адриену Мари Лежандру
ЛЕВИ-СТРОСС: Помните, как в одной из наших бесед вы пообещали мне подробнее рассказать о задаче из вашей докторской диссертации?
ВЕЙЛЬ: Как я мог забыть об этом! Но в этот раз, если вы позволите, мы применим иной метод. Я написал несколько достаточно подробных заметок; прочитайте их, а затем спросите меня о том, что показалось вам непонятным. Вперед!
Читать дальше