Между двумя крайними позициями — абсолютно здоровой тканью и бесспорно опасной для жизни злокачественной опухолью — есть еще несколько менее очевидных вариантов (см. рисунок ниже). Иногда в образце ткани обнаруживаются группы атипичных, подозрительных на вид клеток, но большого беспокойства они не вызывают. Это могут быть предраковые изменения, вовсе не обязательно чреватые серьезными последствиями. Или рак in situ , когда опухоль — так называемая преинвазивная (внутриэпителиальная) протоковая карцинома — остается в пределах млечных протоков.
Выбор терапии во многом зависит от того, к какой категории относится образец взятой на анализ ткани. В зависимости от его положения в диагностическом ряду доктор может сказать, необходима ли вам мастэктомия или другое лечение, а то и вовсе отпустит вас.
Загвоздка в том, что различить промежуточные состояния крайне сложно. Даже самые многоопытные врачи-патологи расходятся во мнениях относительно одного и того же образца ткани. В 2015 году был проведен эксперимент, который показал, как сильно порой различаются диагнозы разных докторов. Ста пятнадцати патологам предложили оценить 72 образца ткани молочной железы с доброкачественными изменениями, то есть занимающими среднюю позицию в ряду состояний. К сожалению, ответы совпали всего в 48 % случаев [158].
Коль скоро ваши шансы на верный диагноз примерно один к одному, то с тем же успехом можно было бы подбросить монетку. Орел — и вам без малейшей нужды делают мастэктомию (в США это стоит сотни тысяч долларов). Решка — и вы упускаете возможность выявить онкологическое заболевание на ранней стадии. И так плохо, и эдак.
Когда ставки так высоки, точность имеет критическое значение. Сможет ли алгоритм лучше выполнить эту работу?
Машины, которые видят
Вплоть до недавнего времени создание программы, способной распознать по изображению что-либо, не говоря уже о раковых клетках, считалось задачей из области головоломных. Пусть нам самим не составляет ни малейшего труда догадаться, что нарисовано на картинке — но чертовски трудно, оказывается, объяснить толком, как мы это узнаем.
Представьте себе, будто вы пишете инструкцию для компьютера, которая позволит ему определить, есть на фото собака или нет. Можно начать с самых надежных критериев — различимы ли четыре ноги, висячие уши, шерсть и прочие признаки животного. А если собака на фото сидит? Или не все ее лапы видны? А что, если у нее уши с заостренными кончиками и стоят торчком? Или собака вовсе отвернулась от камеры? И как отличить лохматого пса от длинноворсового ковра, а также от нестриженой овцы и от травы?
Конечно, можно добавить команды для каждого такого случая, предусмотреть все вероятные типы собачьего уха и шерсти, различные позы, в которых сидят собаки, но прежде чем вы начнете кое-как отличать собак от других предметов и существ с четырьмя ножками или лапами и ворсом или шерстью, программа разрастется до неудобоваримого объема и станет непригодной для работы. Надо придумать что-то другое. Есть одна хитрость — можно отойти от подробно описанных процедур и взять на вооружение так называемую искусственную нейронную сеть, или просто нейросеть [159].
Нейросеть можно представить в виде колоссальной математической структуры со множеством рычажков и ручек настройки. Вы вводите в нее картинку, нейросеть пропускает ее через себя и на выходе выдает результат — что там изображено. Варианты ответа на каждом этапе: “Собака” или “Не собака”.
Поначалу нейросеть абсолютно бесполезна. У нее нет исходной информации, и она не имеет ни малейшего понятия, что является собакой, а что нет. Все рычажки и ручки повернуты как попало. Результаты сумбурны и лишены логики, машина не разглядела бы на фото собаку, даже если это было бы необходимо для бесперебойной работы ее источника питания. Однако с каждой следующей картинкой вы подстраиваете ручки и рычажки. Мало-помалу вы обучаете нейросеть.
Вы загружаете фотографию своего пса. После очередного ответа производятся математические действия, которые регулируют рычажки нейросети до тех пор, пока предварительная оценка не станет ближе к правильному ответу. Затем вы загружаете вторую картинку, третью и, если результат ошибочен, каждый раз что-то подправляете, закрепляете маршруты, которые ведут к цели, и отбрасываете те, что уводят в сторону. Информация об общих деталях разных изображений собаки распространяется по нейросети назад. Процесс продолжается до тех пор, пока — пусть после сотен и тысяч пропущенных через нейросеть фотографий — частота ошибок не сводится к минимально возможной. Рано или поздно вы покажете машине новую картинку, никогда прежде ей не попадавшуюся, и она с высокой степенью достоверности скажет вам, есть на фото собака или нет.
Читать дальше
Конец ознакомительного отрывка
Купить книгу