Эрнест Лависс - Том 4. Время реакции и конситуционные монархии. 1815-1847. Часть вторая

Здесь есть возможность читать онлайн «Эрнест Лависс - Том 4. Время реакции и конситуционные монархии. 1815-1847. Часть вторая» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 1938, Издательство: ОГИЗ, Жанр: История, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Том 4. Время реакции и конситуционные монархии. 1815-1847. Часть вторая: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Том 4. Время реакции и конситуционные монархии. 1815-1847. Часть вторая»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Том 4. Время реакции и конситуционные монархии. 1815-1847. Часть вторая — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Том 4. Время реакции и конситуционные монархии. 1815-1847. Часть вторая», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В Англии блестящим защитником идей такого рода явился Август де Морган (1806–1871), профессор Лондонского университета (1828–1867); но он занимался главным образом вопросами чистой логики. Вильям-Роуан Гамильтон (1805–1865), родившийся в шотландской семье в Дублине, где он преподавал в Коллегии св. троицы с 1827 года, изобрел новое исчисление.

В течение восьми лет его занимала мысль — найти для пространства трех измерений символическое отображение, аналогичное тому, которое мнимые числа дают для плоскости; и вот вечером 16 октября 1843 года, когда он прогуливался с женой по берегу Королевского канала в Дублине, решение задачи блеснуло в его уме, и он выгравировал перочинным ножом на камне моста Врума следующие основные формулы: г 2 = j* — k 2 = ijk =—1. Спустя месяц он сделал в Ирландской королевской академии первое сообщение о кватернионах. Его Лекции (LecturesJ изданы в 1852 году; Элементы (Elements) — в 1866 году.

Герман Грассман (1809–1877), уроженец Штеттина, где он был профессором с 1836 года, в 1844 году, когда издана была первая часть его Линейного учения о протяжении (Lineale Ausdehnungslehre), предвосхитил открытие Гамильтона, установив начала еще более общей и плодотворной теории, не ограниченной определенным числом измерений. К сожалению, его своеобразная терминология и парадоксальная форма изложения оттолкнули даже Гаусса и Мебиуса, ив 1852 году нашелся, кажется, только один математик — Бретшнейдер из Готы, — который прочитал сочинение Грассмана от начала до конца Грассман не мог получить кафедры в университете и направил свою деятельность в другую сферу. Хотя он и издал в 1862 году вторую часть своего Учения о протяжении (Ausdehnungslehre J, но уже с этих пор занимался исключительно филологией, особенно ревностно отдаваясь изучению санскрита; высокая ценность его трудов в этой области была очень скоро признана.

В Италии Юлий Веллавитис (1803–1886) опубликовал в 1835–1837 свое исчисление эквиполенций.

Во Франции великий математик этой эпохи Огюстэн Копти (1789–1857) не давал алгебре уклоняться в сторону, но тем не менее умел двигать ее вперед столь же быстрыми, сколь и верными шагами. В общем, благодаря его трудам понятие о мнимых величинах Гаусса и Аргана окончательно утвердилось, и необходимость учения о мнимых величинах была признана всеми математиками; его «алгебраические ключи» отвечают одной из основных идей Грассмана.

20 мая 1832 года прискорбная дуэль лишила Францию молодого математика, в котором еще на скамье Нормальной школы обнаруживался первоклассный гений. Имя Эвариста Галуа (1811–1832) навсегда останется связанным с понятием о группах подстановок, являющихся отправной точкой одной из важнейших современных теорий; он ввел это понятие для определения условий, при которых алгебраическое уравнение может быть разрешено в радикалах.

В 1829 году Штурм (1803–1855), уроженец Женевы, которому суждено было заменить в Сорбонне Пуассона на кафедре механики, выдвинулся знаменитой теоремой, касающейся определения числа действительных корней алгебраического уравнения, заключенных между двумя данными пределами.

Анализ: Фурье, Коши. Несмотря на выступление на сцену иностранных новаторов, французская школа пользовалась попрежнему неоспоримым авторитетом. Парижская Академия наук никогда не находилась в более цветущем состоянии; по общему признанию, она шла во главе умственного движения, и ее математики с достоинством поддерживали ее репутацию.

Жозеф Фурье (1768–1830) в 1807 году опубликовал свое капитальное открытие, что произвольная функция может быть представлена тригонометрическим рядом. Воспитанник Нормальной школы (1795), некоторое время профессор Политехнической школы, взятый Бонапартом в Египет, где он состоял секретарем Института, затем префект Гренобля в течение 14 лет, он вступил в 1817 году в Академию в качестве физика и в 1822 году издал свою Аналитическую теорию теплоты, в которой его «ряды» находят себе блестящее приложение и которая отмечает собою решающий момент в истории математической физики.

Коши, поступив в 1807 году из Политехнической школы в Корпус путей сообщения, с 1813 года посвятил себя исключительно науке; в 1816 году он вступил в Академию, присудившую ему высшую награду (grand prix), в то же время он преподает механику в Политехнической школе, высшую алгебру — в Сорбонне, математическую физику — в College de France. Горячий легитимист, он отказывается присягнуть Июльскому правительству, покидает Францию в 1831 году, профессорствует два года в Турине, затем отдается научному воспитанию герцога Бордосского. В 1838 году он возвратился в Академию, но кафедру получил снова только в 1848 году.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Том 4. Время реакции и конситуционные монархии. 1815-1847. Часть вторая»

Представляем Вашему вниманию похожие книги на «Том 4. Время реакции и конситуционные монархии. 1815-1847. Часть вторая» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Том 4. Время реакции и конситуционные монархии. 1815-1847. Часть вторая»

Обсуждение, отзывы о книге «Том 4. Время реакции и конситуционные монархии. 1815-1847. Часть вторая» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x