Хотя все без исключения доктрины подверглись переработке, но нигде, быть может, последняя не оказалась более своеобразной, чем в геометрии, где уважение к греческим образцам казалось освященным непоколебимой традицией; не только идеи Дезарга в XVII веке о новых принципах доказательства получили совершенно неожиданное развитие, но быстро возникают и другие, столь же плодотворные, нарождается вполне новая современная наука. Но подъем мысли идет еще дальше: математиками исследуется и доказывается возможность обосновать геометрию, отбросив постулат Эвклида.
С другой стороны, новые открытия, изучение функций, к которым привело интегральное исчисление, особенно же эллиптических функций, открыло в анализе область, дотоле не исследованную, где чистое умозрение пожало обильнейшие жатвы и получило возможность быть приложенным при помощи истинно научных методов к задачам физики, разрешившимся в предшествующем веке путем гипотез, обыкновенно недостаточно широких и в силу этого сомнительных. Истинные начала приложения математики к физике зарождаются, таким образом, лишь в XIX веке; то, что выработали предыдущие века, больше всего пригодилось астрономии.
Эту эволюцию новой математики мы попытаемся изобразить лишь в общих чертах; нижеследующий сжатый очерк даст, надеемся, возможность оценить важность той части развития математики, которая относится к периоду с 1815 по 1847 год.
Современная геометрия: Понселе, Шаль, Мебиус, Штейнер. Монж основал во Франции блестящую школу геометров [56] Назовем Дюпена (1784–1873), которому мы обязаны теорией индикатрисы для кривизны поверхностей (1813), Брианшона (1783–1864), Сервуа (1775–1833) и др.
, по большей части находивших применение своим познаниям на военной или гражданской службе; один из них, Понселе (1788–1867), офицер инженерных войск, взятый в плен под Красным и живший в Саратове в продолжение 15 месяцев, составил там без помощи какой бы то ни было книги заметки [57] Изданы в 1862 году под заглавием Applications d 'Analyse et de Geometrie.
, из которых составилось капитальное сочинение под названием Трактат о проективных свойствах фигур (т. е. свойствах, не изменяющихся от проектирования). С другой стороны, Пон-селе развил теорию взаимной полярности и вывел из нее закон двойственности. Но его работы, посланные в Академию наук в 1824 году, не встретили того приема, какого он ожидал; Коши в своих докладах ставил новую геометрию ниже анализа [58] Этот термин принадлежит Понселе.
, и Понселе, надолго сохранивший об этой сравнительно маленькой неудаче неприятное воспоминание, отдался почти исключительно изучению практической механики [59] Гидравлическое колесо Понселе доставило ему в 1824 году премию. В следующем году он был назначен профессором прикладной механики в Мецское училище. Избранный в Академию наук в 1833 году, он получил в Сорбонне кафедру физической экспериментальной механики.
.
Зато Брюссельская академия [60] Данделен (1794–1847), бывший воспитанник Политехнической школы и офицер, и профессор Кетле популяризировали в Бельгии исследования в области чистой геометрии.
открыла двери этой науке, добившейся здесь полного торжества. Две записки Мишеля Шаля (1793–1880), представленные в декабре 1829 года и весьма полно обработанные для напечатания, закончились знаменитым Историческим очерком (Apergu historiqueJ, за которым последовала Записка о двух общих принципах науки — двойственности и гомографии (Memoire sur deux principes generaux de la science, la dualite et la homographie, 1837), имевшая громадный успех. Шаль, который по окончании Политехнической школы в 1814 году в течение 10 лет состоял биржевым маклером, с 1828 года всецело отдался науке и выдвинулся многочисленными статьями, напечатанными в Journal de YEcole poly technique, в Annales mathematiques Жергона [61] Жергон (1771–1859), профессор астрономии в Монпелье, основал в 1810 году этот журнал, который издавал до 1831 года. Ему мы обязаны введением термина «двойственность» и прямым установлением этого принципа.
и в Correspondance Кетле. В 1841 году он получил кафедру геодезии и теории машин в Политехнической школе, в 1846— кафедру геометрии в Сорбонне, но ему суждено было войти в Академию только в 1851 году. Его карьера этим далеко не закончилась, и он был одним из немногих математиков, до самой старости сохранивших гениальную способность к открытиям.
Между тем Германия, где математические традиции свили себе не такое прочное гнездо, как во Франции, с жаром устремилась на новый путь.
Читать дальше